
DBkWik: A Consolidated Knowledge Graph from
Thousands of Wikis

Sven Hertling
Data and Web Science Group

University of Mannheim
Mannheim, Germany

sven@informatik.uni-mannheim.de

Heiko Paulheim
Data and Web Science Group

University of Mannheim
Mannheim, Germany

heiko@informatik.uni-mannheim.de

Abstract—Popular knowledge graphs such as DBpedia and
YAGO are built from Wikipedia, and therefore similar in
coverage. In contrast, Wikifarms like Fandom contain Wikis for
specific topics, which are often complementary to the information
contained in Wikipedia, and thus DBpedia and YAGO. Extracting
these Wikis with the DBpedia extraction framework is possible,
but results in many isolated knowledge graphs. In this paper,
we show how to create one consolidated knowledge graph, called
DBkWik, from thousands of Wikis. We perform entity resolution
and schema matching, and show that the resulting large-scale
knowledge graph is complementary to DBpedia.

Index Terms—Knowledge Graph Creation, Information Ex-
traction, Linked Open Data

I. INTRODUCTION

General purpose knowledge graphs such as DBpedia,
YAGO, and Wikidata, have become a central part of the Linked
Open Data cloud [1] and are among the most frequently used
datasets within the Web of data [2]. Such knowledge graphs
contain information on millions of entities from multiple
topical domains [3].

Many of the popular knowledge graphs are created from
Wikipedia, and hence have a similar coverage [4]. Gener-
ally speaking, each real world entity for which a dedicated
Wikipedia page exists becomes an entity in the knowledge
graph. This is a fundamental restriction for many applica-
tions – for example, for building content-based recommender
systems backed by knowledge graphs, Di Noia et al. showed
that the coverage of entities in popular recommender system
datasets in DBpedia is no more than 85% for movies, 63%
for music artists, and 31% for books [5].

In this paper, we introduce the DBkWik1 knowledge graph2

(licensed under the Creative Commons Attribution-Share Alike
License3). It is generated by applying the DBpedia extraction
framework4 – i.e., the software that generates the DBpedia
knowledge graph out of a Wikipedia dump – to thousands of
Wikis from a Wikifarm. The result is a large-scale knowledge
graph with more than 11M instances and more than 90M
RDF triples, i.e., it contains twice as many instances as the

1pronounced dee-bee-quick
2http://dbkwik.webdatacommons.org/
3http://creativecommons.org/licenses/by-sa/3.0/
4https://github.com/dbpedia/extraction-framework

Wikipedia based knowledge graphs DBpedia and YAGO. Be-
sides the dataset itself, we also release a set of gold standards
for schema and instance matching, which have been used to
tune and evaluate the methods for interlinking and knowledge
fusion within DBkWik.

The rest of this paper is structured as follows. Section II
describes the approach for creating DBkWik. Section III
gives insights into the topology and contents of the resulting
knowledge graph. We close with a review of related work and
an outlook on future developments.

II. APPROACH

For creating the DBkWik knowledge graph, we use the
software which has been developed for generating DBpedia,
i.e., the DBpedia Extraction Framework. From a high level
point of view, the DBpedia Extraction Framework takes a Wiki
dump5 as input and produces a knowledge graph as output. In
that knowledge graph, one instance is created for each Wiki
page, and one triple is created for each entry in an infobox
(e.g., the population or the capital of a country). Links in an
infobox create a relation between two resources (e.g., a city
and a country for a capital infobox link), whereas non-linked
values in an infobox (e.g., numbers or dates) create a literal
assertion (e.g., the population of a country).

Besides the Wikipedia dumps, the DBpedia extraction
framework also takes as input an ontology and a set of map-
pings between Wiki elements (i.e., infoboxes and keys used
within those infoboxes) and that ontology. Those mappings are
used to create a more strictly formalized subset of Wikipedia.
Moreover, it is used to assign types to instances. For DBpedia,
the ontology as well as the mappings are created manually in
a collaborative workflow.

Since neither manually created mappings nor a central
ontology exist for DBkWik – and it would be infeasible to
manually map thousands of Wikis to such an ontology – we
have to take a different approach here. We extract a very
shallow schema for each Wiki, creating a property for each

5In the scope of this work, we restrict ourselves to Wikis created using the
MediaWiki software, but this is merely a technical, not a conceptual limitation
– as long as a Wiki software is able to create reasonably structured Wikis,
e.g., allows to create infoboxes, categories, etc., it could be used as a source
for knowledge graph creation.

infobox key and a class for each type of infobox. Later in
the process, we identify identical classes and properties using
schema matching, and we statistically infer subclass relations
as well as domain and range restrictions.

Furthermore, in a knowledge graph based on a single
Wiki, there is usually no more than one Wiki page for each
real world entity. Hence, when creating a resource for each
Wiki page, duplicate resources will not occur. When applying
the approach to a multitude of Wikis, this property is not
given, hence, duplicate detection (i.e., matching the knowledge
graphs extracted from the individual Wikis to each other) and
data fusion must be performed in addition to the extraction.

In addition to the pure extraction and fusion, we also
apply two knowledge graph refinement operations, i.e., type
induction using a simplified version of SDType [6], and schema
enrichment including subclass relations as well as domain and
range restrictions. The final dataset is loaded into a Virtuoso
server [7], which makes the knowledge graph available both as
a Linked Data service as well as a SPARQL endpoint. Fig. 1
shows the overall workflow of the DBkWik generation.

A. Extraction of the Initial Knowledge Graph

The initial knowledge graph is extracted from a set of Wiki
dumps using the DBpedia extraction framework. We created
our own, modified version of the DBpedia extraction frame-
work6 to cope with two issues, i.e., (a) the aforementioned
missing mappings and central ontology, and (b) the fact that
we want to process dumps from arbitrary MediaWiki versions
and configurations, while the original extraction framework is
tailored towards the specific configuration of MediaWiki which
is used by Wikipedia. Specifically, the following changes were
made:
• The hard coded URI prefix http://dbpedia.org

was replaced
• All mapping-based extractors were removed (cf. a)
• Types are automatically created from infobox template

names instead (cf. a)
• Abstracts are extracted using the Sweble parser [8] rather

than by setting up MediaWiki instances (cf. b)
The result is one knowledge graph per input Wiki. While

links to other Wikis may exist for a small set of pages in differ-
ent Wikis (and they are extracted where available), the result
is a set of mostly disconnected individual knowledge graphs
(one per input Wiki), with a small set of interconnections.

B. Linking to DBpedia

To make DBkWik a five star dataset [9] and a proper citizen
of the Linked Open Data cloud [1], we include interlinks to
DBpedia, which serves as a central interlinking hub for many
datasets.

We include interlinks both on the schema as well as on
the instance level. For interlinking on the schema level, we
currently use case insensitive string equality, and break ties
by the closest case sensitive match. While more sophisticated

6https://github.com/sven-h/extraction-framework

interlinking approaches are possible, a preliminary study on
previous versions of the dataset has shown that this approach
already guarantees a high quality mapping with an F1 score
above 0.85 [10].

In the same preliminary study, we have observed that
string based matching alone does not guarantee a suitable
mapping on the instance level. Therefore, for interlinking on
the instance level, we pursue a different approach.

We leverage the fact that both DBkWik and DBpedia are
generated from Wikis, hence, we can also use the Wiki page
itself for the mapping. While a Wiki page may or may not
contain an infobox (i.e., relations for the corresponding entity
may or may not be extracted), there is usually a reasonable
amount of text on the page. Therefore, we assume that the
Wiki page text gives the better signal.

To perform the matching, we use the short and long abstracts
extracted by the DBpedia Extraction Framework: the short
abstract is the first paragraph of a Wiki page, the long
abstract is all text which occurs before the first intermediate
headline [11]. We train a doc2vec model [12] on all abstracts
extracted from Wikipedia and the Wiki collection used as
input for DBkWik. That model assigns a point in a high
dimensional vector space to each abstract (and hence to each
entity in DBkWik and DBpedia). We experimented with both
approaches proposed in [12], i.e., PV-DM and PV-DBOW, and
both long and short abstracts. For finding matching candidates
for DBkWik entities, we first find DBpedia candidates derived
from a page with the same title (or a redirect from the same
title), and then pick the candidate with the largest cosine
similarity in the corresponding doc2vec space.

C. Internal Linking and Fusion

The same approaches (i.e., string based matching on the
schema level, exploiting doc2vec on the instance level) are
used to link and fuse the dataset internally, i.e., to identify
duplicate instances, classes, and properties. As a result, we
can unify the schema, i.e., create a common set of classes and
properties, as well as fuse all entities which are identified to
be equal into one. To that end, new URIs are created using a
hash function on the concatenated original URIs.

Formally, DBkWik is created as a quotient graph [13] from
the original extraction, given both an equivalence relation for
the schema and instance level. In this new graph, all instances
and schema elements from the same equivalence class are
replaced by a new, fresh URI.

As a result, we obtain a knowledge graph where all in-
formation about duplicate entities is fused into one entity.
The resulting knowledge graph has less entities, but is more
strongly connected. Fig. 2 illustrates that process.

D. Schema and Type Enrichment

After the fusion, we perform two more steps. The first
step aims at further enriching the so far very shallow on-
tology. Here, we follow the approach introduced in [14],
using association rule mining for determining both subclass
relations as well as domain and range restrictions. Following

Dump
Downloader

DBpedia
Extraction
Framework

Interlinking
Instance
Matcher

Schema
Matcher

MediaWiki Dumps

Extracted RDF

Internal Linking
Instance
Matcher

Schema
Matcher

Consolidated
Knowledge Graph

DBkWik
Linked
Data
Endpoint

Ontology

Knowledge
Graph
Fusion

Instance
Matcher

Domain/
Range

Type
SDType

Light

SubclassMaterialization

Fig. 1: The overall workflow creating the DBkWik knowledge graph

the observation that in a skewed dataset like a general purpose
knowledge graph, a minimum support threshold is not very
meaningful [15], we impose no minimum support threshold,
and a minimum confidence of 0.95.

In the example in Fig. 2, given that we observe many
instances like dbkwik:a7f9bc02, which have both types
dbkwik:Artist and dbkwik:Person, we would induce
the subclass relation

dbkwik:Artist→ dbkwik:Person

The subclass relations are used directly for materialization.
Therefore, in the above example, we would add the triple

dbkwik:87a0c82f rdf:type dbkwik:Person .

The domain and range restrictions are used to implement
a light-weight version SDType [6], using the distribution of
inferred domain and range restrictions instead of the actual
distributions to allow for a more efficient implementation.
While the original implementation of SDType uses the actual
distribution of relations and types to assign probabilities for
types, i.e.,

SDType(o, c) = ν·
∑

(s,p,o)∈G

wp·P ((o, type, c) ∈ G | (x, p, o) ∈ G),

using a normalization factor ν and some property weights wp,
we use the inferred ranges instead for a simplified and more
efficient computation:

SDLight(o) = argmax
c∈classes(G)

|{p|(s, p, o) ∈ G∧(p, range, c) ∈ G}|

where o is the instance for type prediction, c the class and P
the conditional probability. G represents the knowledge graph
consisting of a set of triples.

III. ANALYSIS OF THE RESULTING DATASET

Following the methodology described above, we applied
the approach to Fandom powered by Wikia7, which is one of
the most popular Wiki Farms8, comprising more than 423,000
individual Wikis totaling nearly 40 million articles.

A. Input Data

Only a small fraction of Wikis at Fandom has a dump that is
downloadable. Dumps are not created automatically, but only
upon request by the Wiki owner. In total, we were able to
obtain a total of 12,840 dumps comprising 14,743,443 articles.

Fandom publishes Wikis in various languages, and each
Wiki comes with two orthogonal topical classifications, called
topics and hubs, where the former are more fine grained than
the latter. Figure 3 shows a breakdown by language, topic,
and hub of the Wikis for which we could download a dump.
It can be observed that the majority of the Wikis is in English,
while topic-wise, games and entertainment related Wikis are
predominant.

B. The DBkWik Knowledge Graph

The initial creation of the knowledge graph (i.e., running
the DBpedia extraction framework on the set of downloaded
dumps) leads to an initial, unreconciled knowledge graph.
Table I depicts the characteristics of that initial knowledge
graph extracted (column initial).

The internal matching and fusion reduces the number of
instances by a factor of 21.4%, and also the number of
statements by a factor of 15.1%. Note that the latter factor
is smaller, because a statement s p o is removed if and
only if there is a statement s’ p’ o’, where all three of

7http://fandom.wikia.com/
8http://www.alexa.com/topsites/category/Computers/Software/Groupware/

Wiki/Wiki Farms

wiki04732:Artistwiki12374:Artist

wiki12374:Trent_

Reznor

wiki12374:Mariqueen_

Mandiq

wiki04732:Trent_

Reznor
“1965-05-17“

rdf:type

wiki04732:birthDatewiki12374:marriedTo

rdf:typerdf:type

wiki03432:Person

wiki03432:T._Reznor wiki03432:New_Castle
wiki03432:birthPlace

rdf:typerdf:type

wiki08347:Place

wiki08347:New_

Castle_PA

wiki08347:

Pennsylvania

wiki08347:state

rdf:type

(a) Knowledge graphs from four different Wikis.

dbkwik:Artist dbkwik:Person

dbkwik:87a0c82f dbkwik:a7f9bc02

rdf:type rdf:type
rdf:type

"Mariqueen Mandiq"

rdfs:label

dbkwik:marriedTo

"1965-05-17" "Trent Reznor"

dbkwik:birthDate

"T. Reznor"

rdfs:label

dbkwik:0cb78af3 dkwik:f703ba7c

"New Castle PA"

"New Castle"

rdfs:label

dbkwik:birthPlace dbkwik:state

dbkwik:Place

rdf:type rdf:type

"Pennsylvania"

rdfs:label

(b) Fused knowledge graph.

Fig. 2: Example for the internal linking and fusion, depicting the state before the fusion, with interlinks as dashed lines (top),
and after the fusion (bottom).

TABLE I: Characteristics of the initial and final knowledge
graph

Initial Final
Instances: 14,212,535 11,163,719
Typed instances 1,880,189 1,372,971
RDF Triples 107,833,322 91,526,001
Avg. indegree 0.624 0.703
Avg. outdegree 7.506 8.169
Classes 71,580 12,029
Properties 506,487 128,566

the following apply: s is mapped to s’, p is mapped to p’,
and o is mapped to o’.

Table II shows the 10 classes, properties, and instances
which are most frequently matched. For example, the class
character is extracted from more than five thousand Wikis, and
the property name is extracted from more than four thousand,
and all of those are mapped to a common property. Among
the top 10 instances, there are pages which are likely to occur
in many Wikis (such as Main Page or Templates), but also
interesting instances such as Earth (extracted from 451 Wikis),
Human (extracted from 418 Wikis), and Dragon (extracted
from 377 Wikis). Consequently, the fused instances have very
large degrees in the final knowledge graph (Earth: 13,518,
Human: 38,311, Dragon: 3,391).

It can also be observed that in the current version of
DBkWik, cross-language fusion of entities does not always
work, as observed by the two entries Main Page and Haupt-

seite9 in table II. This is due to the fact that the textual content
of the Wiki pages is used as the main signal for interlinking,
without taking cross-lingual matching into account.

Applying the schema induction approach based on associa-
tion rule mining, we obtain a total of 5,347 class subsumption
rules, 58,724 domain restrictions and 114,272 range restric-
tions. In total, materializing the subclass relations leads to 626
additional rdf:type statements. After applying the light-
weight type induction based on SDType, we obtain another
97,293 rdf:type statements to the knowledge graph.

The characteristics of the knowledge graph after the fusion
and enrichment steps. We can observe that while the number of
instances and statements is reduced, the average degree and
the fraction of typed instances increase, i.e., the knowledge
graph gets smaller and more densely connected.

C. Linkage Quality
To evaluate the quality of the interlinking to DBpedia, as

well as the internal linkage quality, we have created two gold
standards. For the evaluation of the interlinking to DBpedia, an
already created gold standard [10] is used. It contains links to
DBpedia for eight Wikis both on the instance and the schema
level. It was originally generated by three domain experts and
partially improved because some inconsistencies are noticed10.

The resulting interlinking quality is shown in table III. For
the four approaches using doc2vec, we also depict the optimal

9Hauptseite is German for main page.
10The gold standard is available at https://github.com/sven-h/dbkwik

0 1000 2000 3000 4000 5000 6000 7000 8000

en
de
es
fr
pl
ru
it
nl

pt-br
pt
ja
zh
fi

zh-tw
ko

(a) Languages

0 500 1000 1500 2000 2500 3000 3500 4000

Games

Lifestyle

TV

Books

Comics

Movies

Music

Other

Missing

(b) Hubs

0 500 1000 1500 2000 2500 3000 3500

Gaming
Entertainment

Creative
Lifestyle

Education
TV

Video Games
Technology

Anime
Movies
Music

Sports
Books
Fanon
Humor

Science
Missing
Travel

Politics
Comics

Toys
Philosophy

Auto
Finance

Food and Drink
Green
Wikia

Home and Garden
Wikianswers

(c) Topics

Fig. 3: Breakdown of the downloaded Wikis by Language, Topic, and Hub

TABLE II: Most frequently matched classes, properties, and
instances

Classes Properties Instances
name #match name #match name #match
character 5036 name 4131 Main Page 2528
episode 4261 title 3013 Current events 1188
location 4106 caption 2303 Templates 1096
album 4075 type 1981 Characters 642
item 4069 gender 1962 Timeline 489
quest 3869 status 1611 Earth 451
event 3750 next 1566 Human 418
book 1365 location 1488 Dragon 377
box 852 header 1475 Weapons 376
film 402 body 1463 Hauptseite 373

threshold. It can be observed that the schema matching based
on simple string matching yields good results, and that using
doc2vec for instance matching brings a significant advantage.

For evaluating the internal interlinking, we created a gold
standard using a dual approach. The schema-level links were
created manually by ontology experts. For the instance level
links, we set up a crowdsourcing task using Amazon MTurk.
To ensure that a significant number of links can be identified,
we picked three English-language Wikis each from three topics
(gaming, comics, and entertainment) which shared a high

overlap of labels, and sampled 30 pages from each Wiki.
Workers were asked to identify matching pages in the other
two Wikis from the same topic.

Each individual task (i.e., finding matching pages in two
Wikis) was performed by 5 crowd workers.11 The inter-rater
agreement according to Fleiss’ kappa [18] is 0.8762, which is
an almost perfect agreement according to [19].

The results of the evaluation of the internal interlinking
are shown in table IV, using the thresholds for doc2vec that
worked best for the linking to DBpedia. It can be observed
that the schema-level matching is in a similar range as for
the linking to DBpedia, while the instance-based interlinking
using doc2vec does not significantly improve over string-based
matching.

At first glance, the latter is a surprising observation. How-
ever, we assume that the main reason is a bias in our gold
standard, since the Wikis are chosen in a way that matches are

11We restricted the workers to have a 95% approval rate and a minimum
of 100 approved HITs (human intelligence tasks), following the recommen-
dations by [16] and [17], and restricted their location to the US to attract a
large fraction of native speakers. We paid $0.40 for a HIT of finding matching
pages for 10 pages in two Wikis. In total, the creation of the gold standard
took 10 days. Details on the task design as well as the resulting gold standard
are available online at https://github.com/sven-h/dbkwik.

TABLE III: Performance of interlinking to DBpedia

Macro avg. Micro avg.
P R F1 P R F1

Classes 1.000 .831 .908 1.000 .815 .898
Properties .889 .843 .866 .890 .841 .865

Instances

String similarity .459 .676 .547 .449 .657 .533
PV-DM (short) t=.143 .469 .657 .547 .468 .657 .547
PV-DM (long) t=.203 .493 .705 .581 .495 .701 .580
PV-DBOW (short) t=.416 .537 .657 .591 .538 .642 .585
PV-DBOW (long) t=0.5 .663 .689 .676 .643 .672 .657

likely to occur, i.e., they share similar topics. This means that
in this gold standard, it is not likely that two pages with the
same title describe two different instances, while this is likely
in the general case of matching to arbitrary Wikis. Therefore,
we expect that, although string similarity works fine on the
gold standard, it is likely to produce more false positives in the
general case. Hence, we stuck to the doc2vec based approach
also for the internal linking and fusion for creating the final
dataset.

D. Complementarity to DBpedia

In [4], we have introduced a method for estimating the
overlap of two knowledge graphs, given that (a) an imperfect
link set between the two exists, and (b) we can estimate the
quality of that link set in terms of precision and recall. We
propose that given that there exist N links at a precision of P
and a recall of R, the two knowledge graphs have an overlap
O (i.e., number of common entities) of

O = N · P · 1
R

Since the best mapping approach to DBpedia found 552,292
links at a precision of 0.643 and a recall of 0.672, the total
estimated overlap according to that overlap is 528,458. In other
words, only 95.3% of all entities in DBkWik are contained
exclusively in DBkWik and not in DBpedia. Likewise, 89.7%
of all entities in DBpedia are not contained in DBkWik. These
numbers illustrate the high complementarity between DBpedia
and DBkWik.

In addition, we also used the schema-level class mappings
to DBpedia to identify classes that are considerably larger in
DBkWik than in DBpedia. Table V depicts the largest classes
in DBkWik and the corresponding instance counts in DBkWik
and DBpedia. It can be observed that while for three out of the
ten classes (the gaming specific classes item, quest, and jutsu),
there is no corresponding class in DBpedia, there are at least
four additional classes (fictional character, episode, song, and
actor) where DBkWik has significantly more instances than
DBpedia. On the other hand, locations, ships, and military
persons are better covered by DBpedia.

IV. RELATED WORK

In general, knowledge graphs can be created by vari-
ous means, including manual curation, crowdsourcing, (semi-
)automatic extraction, and/or a combination of those. Manually
(i.e., expert) curated knowledge graphs, such as OpenCyc [20],

can reach very high levels of accuracy, but only a limited
coverage. On the other end of the spectrum, automatically
created knowledge graphs, such as DBpedia [21], YAGO [22],
or NELL [23], can reach a larger scale, but at a lower level of
accuracy. Table VI depicts the most popular publicly available
knowledge graphs and their respective sizes.

DBpedia and YAGO are created with Wikipedia as their in-
put source. Both extract relations from infoboxes in Wikipedia
using mappings from keys used in infoboxes to properties
defined in a central ontology – for DBpedia, those mappings
are crowdsourced [24], for YAGO, they are created by experts
[22]. Furthermore, the DBpedia ontology defines a manually
crafted class hierarchy, whereas YAGO creates a class hierar-
chy by combining Wikipedia’s category system with WordNet
[25]. By design, both DBpedia and YAGO have a similar set of
instances, i.e., each instance corresponds to a Wikipedia page.
Wikidata also extracts information from Wikipedia, combined
from different language editions, and exploits further external
sources, such as library databases [26].

In contrast to this extraction, NELL is extracted from text
from the Web. It uses a small set of seed facts and text patterns
to iteratively learn new facts and patterns based on a Web
crawl. Likewise, the WebIsALOD dataset [27], [28] extracts
a large taxonomy, i.e., a set of hypernymy relations, from
a large-scale Web crawl. The resulting graph is very large,
but contains no other relations beyond hypernymy. Since both
NELL and WebIsALOD are extracted from text, they suffer
from issues in entity disambiguation, which does not exist for
Wikipedia based graphs by design [29].

Besides publicly available knowledge graphs, companies
such as Google, Microsoft, or Facebook also maintain their
own, non-public knowledge graphs. One approach which is
close to DBkWik is Google’s Knowledge Vault [30], which
combines data extracted from various sources on the Web,
such as text, tables, and page structure. However, Knowledge
Vault (like Google’s knowledge graph) is only used internally
in Google applications and cannot be accessed or downloaded
directly.

Table VI summarizes public cross-domain knowledge
graphs.12 Among those, it is remarkable that DBkWik has
more than twice as many instances as the Wikipedia-based
knowledge graphs DBpedia and YAGO.

12The numbers are taken from [4] and [27]. Note that WebIsALOD does
not distinguish classes and instances, therefore, we cannot count classes.

TABLE IV: Performance of internal interlinking within DBkWik

Macro avg. Micro avg.
P R F1 P R F1

Classes .990 .990 0.990 .979 .979 .979
Properties .840 .809 .824 .860 .813 .836

Instances

String similarity .919 .824 .869 .920 .846 .881
PV-DM (short) t=.143 .919 .824 .869 .920 .845 .881
PV-DM (long) t=.203 .919 .824 .869 .920 .845 .881
PV-DBOW (short) t=.416 .921 .824 .870 .924 .846 .883
PV-DBOW (long) t=0.5 .921 .816 .866 .923 .838 .879

TABLE V: The largest classes in DBkWik with instance counts
in DBkWik and DBpedia (– indicates that no corresponding
class exists in DBpedia)

Class # Instances DBkWik # Instances DBpedia
Fictional Character 303,598 21,845
Item 82,395 –
Episode 56,048 10,633
Location 24,582 881,597
Song 22,436 9,225
Actor 20,278 6,697
Ship 18,591 35,486
Jutsu 18,122 –
Military Person 17,577 33,181
Quest 17,272 –

V. CONCLUSION AND OUTLOOK

In this paper, we have introduced the DBkWik knowledge
graph. It is created by processing the dumps of different Wikis
using the DBpedia extraction framework, followed by data fu-
sion and schema enrichment. The resulting knowledge graph,
although so far only using a subset of available Wikis, is in the
order of magnitude of current public, cross-domain knowledge
graphs, and has been shown to be rather complementary to
Wikipedia-based knowledge graphs such as DBpedia.

Although we have targeted one Wiki hosting platform for
this prototype, i.e., Fandom, the creation of the knowledge
graph does not need to end there. WikiApiary reports more
than 20,000 public installations of MediaWiki13, all of which
could be processed and integrated by the framework intro-
duced in this paper. In the future, we plan to crawl the Web
for dumps of MediaWiki installations and include them in our
knowledge graph.

In the past, many approaches for refining knowledge graphs
have been proposed [3]. In the course of this paper, we
have included a few of those (i.e., subclass induction for
type completion, and a light weight version of SDType),
there is a large potential to apply more of those operators.
For example, in [11], we have shown that relation extraction
from abstracts can create a substantial improvement for Wiki-
based knowledge graphs. However, extending the approach to
multiple abstracts per Wiki might be another issue.

Another problem we have currently not considered is con-
flict detection and resolution. If we find different statements
about an entity, they might be either complementary (e.g.,
different movies a person has acted in) or conflicting (e.g.,

13https://wikiapiary.com/wiki/Statistics

different birthdays of a person). Conflicts may arise, e.g.,
due to errors or outdated information. In the past, approaches
for dealing with conflicts have been shown to work for
different language editions from Wikipedia [31], which could
be transferred to the DBkWik knowledge graph as well.

For DBkWik, there is a pipeline of several interdependent
steps – e.g., schema matching, instance matching, data fusion,
and refinement operators – and a systematic analysis of those
interdependencies is still to be performed. Furthermore, joint
approaches performing several of those steps simultaneously
might be worth investigating.

Since there are many interesting opportunities for contribut-
ing to the quality of DBkWik, we have not only released the
dataset, but also the corresponding gold standards, e.g., for
schema and instance matching. The latter is also used in a
novel knowledge graph matching task at the annual Ontology
Alignment Evaluation Initiative (OAEI).14

Overall, we conclude that DBkWik is not only a novel
cross-domain knowledge graph complementary to commonly
known graphs such as DBpedia and YAGO, but also an
interesting new testbed for novel methods for knowledge graph
construction and fusion.

Acknowledgements

We would like to thank Alexandra Hofmann, Samresh
Perchani, and Jan Portisch, who helped developing the first
prototype of DBkWik in the course of a student project.

REFERENCES

[1] M. Schmachtenberg, C. Bizer, and H. Paulheim, “Adoption of the
linked data best practices in different topical domains,” in International
Semantic Web Conference. Springer, 2014, pp. 245–260.

[2] K. M. Endris, J. M. Giménez-Garcı́a, H. Thakkar, E. Demidova, A. Zim-
mermann, C. Lange, and E. Simperl, “Dataset reuse: An analysis of
references in community discussions, publications and data,” Extraction,
vol. 500, p. 1, 2017.

[3] H. Paulheim, “Knowledge Graph Refinement: A Survey of Approaches
and Evaluation Methods,” Semantic Web, 2016.

[4] D. Ringler and H. Paulheim, “One knowledge graph to rule them all?
analyzing the differences between dbpedia, yago, wikidata & co.” in
Joint German/Austrian Conference on Artificial Intelligence (Künstliche
Intelligenz). Springer, 2017, pp. 366–372.

[5] T. D. Noia, V. C. Ostuni, P. Tomeo, and E. D. Sciascio, “Sprank:
Semantic path-based ranking for top-n recommendations using linked
open data,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 8, no. 1, p. 9, 2016.

[6] H. Paulheim and C. Bizer, “Type inference on noisy rdf data,” in
International Semantic Web Conference. Springer, 2013, pp. 510–525.

14http://oaei.ontologymatching.org/2018/knowledgegraph/

TABLE VI: Public cross-domain knowledge graphs and their size

Knowledge Graph # Entites # RDF Triples Avg. indegree Avg. outdegree # Classes # Relations
OpenCyc 118,499 2,413,894 10.03 9.23 116,822 165
NELL 1,974,297 3,402,971 5.33 1.25 290 1,334
YAGO3 5,130,031 1,435,808,056 9.83 41.25 30,765 11,053
DBpedia 5,109,890 397,831,457 13.52 47.55 754 3,555
DBkWik 11,163,719 91,526,001 0.70 8.17 12,029 128,566
Wikidata 44,077,901 1,633,309,138 9.83 41.25 30,765 11,053
WebIsALOD 212,184,968 400,533,808 3.72 3.31 – 1

[7] O. Erling, “Virtuoso, a hybrid rdbms/graph column store.” IEEE Data
Eng. Bull., vol. 35, no. 1, pp. 3–8, 2012.

[8] H. Dohrn and D. Riehle, “Design and implementation of the swe-
ble wikitext parser: unlocking the structured data of wikipedia,” in
Proceedings of the 7th International Symposium on Wikis and Open
Collaboration. ACM, 2011, pp. 72–81.

[9] T. Heath and C. Bizer, “Linked data: Evolving the web into a global data
space,” Synthesis lectures on the semantic web: theory and technology,
vol. 1, no. 1, pp. 1–136, 2011.

[10] A. Hofmann, S. Perchani, J. Portisch, S. Hertling, and H. Paulheim,
“Dbkwik: towards knowledge graph creation from thousands of wikis,”
in International Semantic Web Conference (Posters and Demos), 2017.

[11] N. Heist, S. Hertling, and H. Paulheim, “Language-agnostic relation
extraction from abstracts in wikis,” Information, vol. 9, no. 4, p. 75,
2018.

[12] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International Conference on Machine Learning, 2014,
pp. 1188–1196.

[13] P. Guzewicz and I. Manolescu, “Quotient rdf summaries based on type
hierarchies,” in DESWeb 2018 - Data Engineering meets the Semantic
Web 2018, 2018.

[14] J. Völker and M. Niepert, “Statistical schema induction,” in Extended
Semantic Web Conference. Springer, 2011, pp. 124–138.

[15] H. Paulheim, “Data-driven joint debugging of the dbpedia mappings and
ontology,” in European Semantic Web Conference. Springer, 2017, pp.
404–418.

[16] G. Kazai, In Search of Quality in Crowdsourcing for Search Engine
Evaluation. Springer Berlin Heidelberg, 2011, pp. 165–176.

[17] D. J. Hauser and N. Schwarz, “Attentive turkers: Mturk participants per-
form better on online attention checks than do subject pool participants,”
Behavior Research Methods, vol. 48, no. 1, pp. 400–407, 2016.

[18] J. L. Fleiss, “Measuring nominal scale agreement among many raters.”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[19] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977.

[20] D. B. Lenat, “CYC: A large-scale investment in knowledge infrastruc-
ture,” Communications of the ACM, vol. 38, no. 11, pp. 33–38, 1995.

[21] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer,
“DBpedia – A Large-scale, Multilingual Knowledge Base Extracted
from Wikipedia,” Semantic Web Journal, vol. 6, no. 2, 2013.

[22] F. Mahdisoltani, J. Biega, and F. M. Suchanek, “Yago3: A knowledge
base from multilingual wikipedias,” in CIDR, 2013.

[23] A. Carlson, J. Betteridge, R. C. Wang, E. R. Hruschka Jr, and T. M.
Mitchell, “Coupled semi-supervised learning for information extraction,”
in Proceedings of the third ACM international conference on Web search
and data mining, 2010, pp. 101–110.

[24] M. Rico, N. Mihindukulasooriya, D. Kontokostas, H. Paulheim, S. Hell-
mann, and A. Gómez-Pérez, “Predicting incorrect mappings : a data-
driven approach applied to dbpedia,” in Proceedings of the 33rd Annual
ACM Symposium on Applied Computing, 2018, pp. 323–330.

[25] C. Fellbaum, WordNet – An Electronic Lexical Database. MIT Press,
1998.

[26] D. Vrandečić and M. Krötzsch, “Wikidata: a Free Collaborative Knowl-
edge Base,” Communications of the ACM, vol. 57, no. 10, pp. 78–85,
2014.

[27] S. Hertling and H. Paulheim, “Webisalod: providing hypernymy relations
extracted from the web as linked open data,” in International Semantic
Web Conference. Springer, 2017, pp. 111–119.

[28] J. Seitner, C. Bizer, K. Eckert, S. Faralli, R. Meusel, H. Paulheim, and
S. P. Ponzetto, “A large database of hypernymy relations extracted from
the web.” in LREC, 2016.

[29] H. Paulheim and C. Bizer, “Improving the quality of linked data using
statistical distributions,” International Journal on Semantic Web and
Information Systems (IJSWIS), vol. 10, no. 2, pp. 63–86, 2014.

[30] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang, “Knowledge vault: A web-scale
approach to probabilistic knowledge fusion,” in Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2014, pp. 601–610.

[31] V. Bryl and C. Bizer, “Learning conflict resolution strategies for cross-
language wikipedia data fusion,” in Proceedings of the 23rd Interna-
tional Conference on World Wide Web. ACM, 2014, pp. 1129–1134.

