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ABSTRACT
Transformer-based models like BERT have pushed the state-of

the-art for a wide range of tasks in natural language processing.

General-purpose pre-training on large corpora allows Transformers

to yield good performance even with small amounts of training

data for task-specific fine-tuning. In this work, we apply BERT to

the task of product matching in e-commerce and show that BERT

is much more training data efficient than other state-of-the-art

methods. Moreover, we show that we can further boost its effec-

tiveness through an intermediate training step, exploiting large

collections of product offers. Our intermediate training leads to

strong performance (>90% F1) on new, unseen products without

any product-specific fine-tuning. Further fine-tuning yields addi-

tional gains, resulting in improvements of up to 12% F1 for small

training sets. Adding the masked language modeling objective in

the intermediate training step in order to further adapt the language

model to the application domain leads to an additional increase of

up to 3% F1.

CCS CONCEPTS
• Information systems → Entity resolution; Electronic com-
merce; • Computing methodologies→ Neural networks.
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1 INTRODUCTION
Product matching is the task of deciding if offers originating from

different web-shops refer to the same real-world product. This is

a central task for e-commerce applications such as online market

places, price comparison portals, as well as for the construction

of product knowledge graphs [36] such as the one currently built

by Amazon [10]. Different merchants present their products in

different ways, leading to heterogeneity among offers of the same

product, which makes product matching a challenging task.

In natural language processing (NLP), deep Transformer net-

works [33], pre-trained on large corpora via language modeling

objectives [7, 8, 22, inter alia] significantly pushed the state-of-the-

art in a variety of downstream tasks [15, 34], including a number of

sentence-pair classification tasks, e.g. paraphrase identification [9].

Recent studies [4, 21] also demonstrate the effectiveness of Trans-

former models like BERT [8] for the task of entity matching.

In this work, we show that fine-tuning BERT for product match-

ing is much more training data efficient than the state-of-the-art

DI2KG 2020, August 31, Tokyo, Japan. Copyright ©2020 for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY

4.0).

framework Deepmatcher [24]. Fine-tuning BERT results in 15-20%

higher F1 scores in settings with small- and medium-sized training

sets. Even for large training sets, fine-tuning BERT still yields a 2%

improvement over Deepmatcher.
Inspired by findings that intermediate training on large training

sets for related tasks [28, 30] improves downstream performance,

we next introduce an intermediate training step before the final

fine-tuning of the model for specific products. In this step, we train

BERT on product data from thousands of e-shops and show that

intermediate training leads to high performance (>90% F1) and

good generalization to new products, even without any product-

specific fine-tuning. Poor generalization to new products is themain

weakness of Deepmatcher [24], as shown in our previous work [26].

Our intermediate training is particularly beneficial for fine-tuning

setups with limited training data: it leads to improvements of up to

12% F1 on new products with small training datasets, compared to

direct fine-tuning (i.e. without any intermediate training). Finally,

we show that adding domain-specific (self-supervised) language

modeling to the intermediate training leads to further gains of up

to 3% F1 in downstream product-matching tasks.

All code and data of our experiments is available on GitHub
1

which makes all results reproducible.

2 BERT FOR PRODUCT MATCHING
Deep Transformer-based models like BERT [8] use stacked encoder

layers based on a self-attention mechanism [33], which allows ev-

ery (sub-)word to attend to every other (sub-)word in a sequence,

enabling mutual semantic contextualization of words. The deep

architecture, i.e. stacking of attention layers, allows for model-

ing of syntactic and semantic compositionality of the language

that stems from word interactions [14]. Unlike static word embed-

dings [3, 23, 27], where each word has one fixed vector regardless

of the context, pre-trained Transformers produce context-specific

vector representations of words, allowing, inter alia, to capture

different word senses (e.g. bank would have very different repre-

sentations in contexts in which it denotes a financial institution
from those in contexts where it denotes a river bank). BERT is pre-

trained on a large corpus of text (concatenation of Wikipedia and

BookCorpus) using two pre-training objectives: (1) The masked lan-

guage modeling objective (MLM) aims to reconstruct (i.e. predict)

words that have been masked out in the input text from the context;

(2) The next sentence prediction (NSP) objective predicts if two

sentences are adjacent to each other in text or not – contributing to

downstream performance of text-pair classification tasks. The input

to the BERT model has the following format: [CLS] Sequence 1
[SEP] Sequence 2 [SEP]. Two sequences, comprising (sub-)word

1
https://github.com/Weyoun2211/productbert-intermediate
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Table 1: Test and training set statistics

# products

w/ pos (overall)

# Pos.

Pairs

# Neg.

Pairs

# Comb.

Pairs

Test set

computers 150 (745) 300 800 1,100

Training sets

xlarge 745 9,690 58,771 68,461

large 745 6,146 27,213 33,359

medium 745 1,762 6,332 8,094

small 745 722 2,112 2,834

tokens, are separated using [SEP] tokens; the sequence start token

[CLS] serves to capture the representation of the whole text-pair.

After the pre-training step, it it possible to either use the output

representations of each word in downstream tasks (feature-based

approach) or to fine-tune the BERT model itself for these tasks

(fine-tuning-based approach), with the latter generally leading to

better performance. In this work, we adopt the standard fine-tuning

for sentence-pair classification: we feed the transformed represen-

tation of the sequence start token [CLS], xCLS into a simple logistic

regression classifier:𝑦 = 𝜎 (xCLSWcl +𝑏cl), withWcl and bcl as well
as BERT’s parameters being optimized during fine-tuning.

2.1 Datasets
In our experiments, we use the training, validation and gold stan-

dard (test) datasets from the computers category of the WDC Prod-

uct Corpus for Large-Scale Product Matching [26]. These datasets

are derived from schema.org annotations from thousands of web-

shops extracted from the Common Crawl. Relying on schema.org

annotations of product identifiers like GTINs or MPNs allows us

to directly create binary (matching or non-matching) labels for

our classification task, without the need for laborious manual an-

notation. All labels of the test set used for final evaluation have

been manually checked. Previous experiments with these datasets

have shown that using schema.org ids as distant supervision re-

sults in clean enough labels for training high-performance product

matchers [26].

The computers test set encompasses positive pairs for 150 unique

products. The negative pairs for these products contain offers for

595 additional products. The corresponding training sets contain

both positive and negative pairs for the same products. For more

details on the construction of the product corpus as well as the

training and test sets, we refer the reader to [29] and to the project

website
2
. To test the efficiency of the classifiers w.r.t. training size,

we experiment with training sets of varying size: small, medium,

large, xlarge. Table 1 shows statistics of the training sets and test

set.

2.2 Fine-tuning Setup
We cast product matching as a binary classification task, i.e. given

two offers, we predict if they represent the same real-world product.

Input for BERT (Sequence 1 and 2) is then the concatenation of

2
http://webdatacommons.org/largescaleproductcorpus/v2/

the product data of each offer. To this end, we first concatenate

all attributes of each product offer into one string. We use the

attributes brand, title, description and specification table content and
concatenate them in this order.

Experimental setup. We conduct all our experiments with Py-

Torch [25] using BERT’s implementation
3
from the HuggingFace

Transformers library [35]. All hyperparameters are set to their de-

faults if not stated otherwise. Weminimize the binary cross-entropy

loss using Adam [17] as optimization algorithm. BERT allows for

input sequences of maximal length of 512 tokens: we first constrain

each attributes length to 5 (brand), 50 (title), 100 (description) and
200 (specification table content) words respectively, dropping any
words outside that range, and further truncate long product of-

fers by removing tokens from their end until we satisfy BERT’s

constraint. We fine-tune all layers for 50 epochs with a linearly de-

caying learning rate with warm-up over the first epoch. We use the

validation set for model selection and early stopping: if the F1 score

on the validation set does not improve over 10 consecutive epochs,

we stop the training. We use a fixed batch size of 32 and sweep

learning rates in the range [5e-6, 1e-5, 3e-5, 5e-5, 8e-5, 1e-4]. We

train three model instances for each hyperparameter configuration

and report the average performance.

Baselines. We compare BERT-based product matching with sev-

eral baselines. First, we evaluate a simple word co-occurrence based

approach, where we feed binary bag-of-words features of the two

product offers to traditional classification algorithms. We also test

the Magellan framework [18] for entity resolution which generates

string- and numeric-similarity based features. Magellan constructs

these features depending on the data types of the input attributes.

We combine both the Magellan and the word co-occurrence fea-

ture creation methods with XGBoost, Random Forest, Decision Tree,
linear SVM, and Logistic Regression as classification methods and ap-

ply randomized search over the respective hyperparameter spaces.

Finally, we compare against Deepmatcher [24], a state-of-the-art
neural entity resolution framework using pre-trained word embed-

dings as input. Deepmatcher computes attribute-wise similarities

between two records and then combines these as features for the

matching decision. For Deepmatcher, we use fastText embeddings

trained on the English Wikipedia
4
as input and allow for the fine-

tuning of word embeddings, which, albeit not part of the original

implementation, has been shown to improve performance [26]. We

train all Deepmatcher instances for 50 epochs with default parame-

ters and only search for the optimal learning rate. For Deepmatcher
and BERT we use the method specific tokenizers for pre-processing,

for the other baselines we lower-case all attributes before further

processing.

2.3 Fine-tuning Results
Table 2 compares the results of fine-tuning BERT to the baselines.

BERT outperforms all three baselines in all settings. The gains

from BERT-based product matching become larger the smaller the

training dataset is: for the smallest training set, BERT outperforms

Deepmatcher by 20 F1 points. Even for the largest training set, we

3
We used the following pre-trained BERT instance: bert-base-uncased.

4
https://fasttext.cc/docs/en/pretrained-vectors.html
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Table 2: BERT compared to baselines

Word Cooc. Magellan deepmatcher BERT Li et al. [21]

P R F1 P R F1 P R F1 P R F1 F1

xlarge 86.59 79.67 82.99 71.44 56.89 63.33 89.63 94.78 92.12 95.99 93.00 94.47 95.45

large 79.52 77.67 78.58 67.67 63.67 65.60 85.70 91.22 88.38 91.64 95.00 93.29 91.70

medium 65.83 78.33 71.54 48.99 81.56 61.20 66.39 82.78 73.67 84.89 94.22 89.31 88.62

small 53.98 74.67 62.66 50.86 71.22 59.17 54.86 69.56 61.20 75.62 89.33 81.89 80.76

obtain 2.3% F1 gain over Deepmatcher. Our results are in line with

the findings of Li et al. [21], though not fully comparable, as the

authors use DistilBERT [31] and apply additional data augmentation

techniques. Overall, we can conclude that fine-tuning BERT is a

promising technique for product matching, especially in settings

with limited training data.

3 INTERMEDIATE TRAINING ON
DOMAIN-SPECIFIC DATA

BERT has been pre-trained on a general-purpose natural language

corpus, whose language as well as topics are rather different from

product descriptions. We thus test the intuitive assumption that in-

termediate in-domain training – after BERT’s original pre-training

and before fine-tuning for specific products – can improve match-

ing performance. For the intermediate training we use training data

covering a wide range of products from thousands of e-shops.

3.1 Building Intermediate Training Sets
We leverage the WDC Product Corpus for Large-Scale Product

Matching [29] and its product-cluster structure to build wide cov-

erage training sets consisting of millions of offer pairs. The corpus

consists of clusters containing offers for the same product. The

clusters have been derived using schema.org annotated ids as weak

supervision (see Section 2.1). In order to have an unbiased evalua-

tion, the clusters contained in the test set and fine-tuning training

sets are removed from the corpus prior to building the intermediate

training sets.

We compare the effects of intermediate training on two struc-

turally different training sets. The first intermediate training set

contains only offer pairs for the category computers: this allows
us to introduce more computer information into BERT and have

the Transformer network detect relevant linguistic phenomena for

recognizing matches between computer offers. The second train-

ing set contains pairs from four categories – computers, cameras,
watches and shoes – with fewer training pairs per product: this

offers a wider selection of products (i.e., more versatile information

about what constitutes a product match for the model), but less

in-depth information for each product/category.

We build the training sets as follows: for positive instances, we

select only clusters containing more than one offer, from which we

can build at least one positive pair. We restrict ourselves to clusters

of size ≤80 after observing that very large clusters contain more

noise and may lead to degradation of performance. For each offer

in each cluster we build up to 15 (computers) or 5 (4 categories)

positive pairs with the other offers from that cluster. Half of those

are hard positives, created by a) applying cosine similarity between

Table 3: Intermediate training set statistics

# products

w/ pos (overall)

# pos.

pairs

# neg

pairs

# comb.

pairs

computers only 60,030 (286,356) 409,445 2,446,765 2,856,210

4 categories 201,380 (838,317) 858,308 2,665,056 3,523,364

bag-of-words vectors of concatenation of title and the first 5 words

of description and b) sorting offer pairs by cosine similarity and

selecting pairs with the lowest scores. The remaining 50% are se-

lected by randomly pairing offers from the same cluster. We create

negative pairs in a similar fashion: for each offer taken for positives

pairs, we create the same amount of negatives pairs using offers

from other clusters of the same category. Hard negatives (50%) are
pairs of offers from different clusters with the highest cosine sim-

ilarity; the other half are randomly sampled pairs of offers from

different clusters. Table 3 displays the statistics of the resulting

intermediate training sets.

3.2 Intermediate Training Procedure
For the first set of experiments, the intermediate training is per-

formed with a single objective, the binary product matching task.

The architecture is exactly the same as for the fine-tuning exper-

iments. One model is trained for each of the training sets from

Table 3. After intermediate training, we evaluate the model with

and without final product-specific fine-tuning. We run the inter-

mediate training for 40 epochs with a linearly decaying learning

rate (starting from 5e-5) with 10,000 warmup steps and a batch

size of 256. Due to the long training times we train the first 90% of

epochs on sequences of length 128 and only the last 10% on the full

sequences of 512 tokens to speed up training, similar to the original

BERT training procedure [8].

In the second set of experiments, we add the MLM objective

to the product matching objective and jointly optimize both in

the intermediate training step. We follow the original masking

procedure: we randomly select 15% of tokens for replacement; in

80% of the cases, we replace the token with the [MASK] token,

in 10% of the cases with a random vocabulary token, and in the

remaining 10% we keep the original token (i.e., we give up the

replacement). As in the original work, we train the Transformer

network by minimizing the cross-entropy loss over predictions of

masked tokens. After the intermediate training, we again evaluate

two model variants: with and without the final product-specific

matching fine-tuning.
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Table 4: Intermediate training with PM objective

intermediate training

computers category 4 categories

P R F1

Δ only

fine-tune

P R F1

Δ only

fine-tune

xlarge 95.58 93.67 94.61 0.14 95.45 95.44 95.45 0.98

large 92.68 95.56 94.09 0.80 91.34 96.00 93.61 0.32

medium 94.01 95.78 94.88 5.57 91.59 95.67 93.59 4.28

small 94.38 93.11 93.73 11.84 90.39 90.89 90.64 8.75

none 94.41 90.00 92.15 -2.32 (xl) 88.24 95.00 91.49 -2.98 (xl)

3.3 Intermediate Training Results
Table 4 shows the results of the intermediate training procedure.

We compare the intermediate training on the computers training set

against the intermediate training on the training set comprising 4

product categories. We observe that even without final fine-tuning

(row ’none’ in Table 4), we achieve a very good matching per-

formance of 92% F1. This suggests that through the intermediate

training we inject category-specific knowledge into BERT’s param-

eters, as it is evidently able to make good matching predictions for

products for which it had not seen any training examples. Once

the intermediate model is subjected to further fine-tuning on offer

pairs from the training sets, we observe further improvements in all

settings, with gains being most prominent for the smallest training

set. Intermediate training followed by fine-tuning on small training

sets reaches a performance of ∼94% F1, which, without intermedi-

ate pre-training (see Table 2), we previously obtained only on the

largest training set. Training on category-specific data (computers)
generally yields marginally better performance than training on

the mix of 4 categories..

Table 5 shows the results of adding the MLM objective to the

product matching objective in the intermediate training step using

the computers intermediate training set. Compared to the corre-

sponding settings in which the intermediate training did not in-

clude MLM (see left half of the Table 4), the performance (with

fine-tuning) increases by up to 3% F1, yielding a new top overall

matching performance (>97% F1 for the largest training set and 96%

F1 for all other training sizes). This confirms the findings from

other application domains [2, 20] pointing to benefits of domain-

specific MLM pre-training. The original pre-training data likely

only contains few instances of product-specific vocabulary, as it

covers a wide range of topics. Applying intermediate MLM training

on domain-specific data allows for adaptation of the vocabulary

embeddings to the domain, resulting in better downstream perfor-

mance.

In summary, subjecting BERT to an intermediate training step

with large amounts of product data leads to a model that generalizes

well to new unseen products from the same category and can be eas-

ily fine-tuned with small amounts of product-specific training data

to further increase the performance for these products. Depending

on the structure of the intermediate training set, more training data

for a single category can lead to a small increase in performance

compared to a more heterogeneous training set encompassing a

larger set of products from several categories. Adding the MLM

Table 5: Intermediate training with PM and MLM objective

intermediate training - PM + MLM

P R F1

Δ only

fine-tune

Δ interm.

only PM

xlarge 98.20 96.56 97.37 2.90 2.76

large 94.99 96.67 95.82 2.53 1.73

medium 96.05 97.11 96.58 7.27 1.70

small 95.64 97.44 96.53 14.64 2.80

none 94.31 94.00 94.16 -0.31 (xl) 2.01

objective to the intermediate training results in further improve-

ments in matching performance, suggesting that domain-specific

language modeling indeed successfully adapts BERT’s parameters

to the product domain.

4 RELATEDWORK
Product matching, a task with rich history and large body of work

in both research and industry, can be seen as a special case of entity
resolution, which concerns itself with the disambiguation of entity

representations to their respective real-world entity [5, 6]. Early

approaches applied rule- and statistics-based methods [12]. Since

the early 2000s, machine learning based methods have taken the

focus due to their strong performance [19]. In recent years, due

to the successes of deep learning in fields like computer vision

and natural language processing, researchers working on entity-

matching started to shift their attention towards these methods as

well [1, 11, 13, 16, 24, 32, 37]. Recently, Transformer-based architec-

tures [8, 33] were shown to produce state-of-the-art results [4, 21].

5 CONCLUSION
Transformer-based language models like BERT have had a tremen-

dous impact in the field of NLP, improving the state-of-the-art per-

formance in a wide variety of tasks. In this work, we demonstrate

the utility of BERT for product matching in e-commerce, showing

that it is much more training data efficient than Deepmatcher. Per-
forming intermediate training of BERT with large amounts of prod-

uct data from thousands of e-shops leads to a model with high gen-

eralization performance (>90% F1) for new (i.e. unseen) products.

We show that, if submitted to intermediate training, BERT reaches

peak performance with less product-specific training data than

without intermediate training. We achieve the best performance

if intermediate training combines two jointly-trained objectives:

(1) binary product-matching and (2) masked language modeling.

Category-specific intermediate training yields only slightly better

performance than intermediate training on cross-category data.

While intermediate product-matching training alone brings sub-

stantial gains, adding the masked language modeling objective to

the intermediate training gives an additional performance edge of

up to 3% F1 in all setups. This is in line with observations from other

domains, such as scientific text [2, 20], that domain-specific lan-

guage modelling improves the performance of BERT for in-domain

downstream tasks.
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