
Using schema.org Annotations for Training and Maintaining
Product Matchers

Ralph Peeters
Data and Web Science Group
University of Mannheim
Mannheim, Germany

ralph@informatik.uni-mannheim.de

Anna Primpeli
Data and Web Science Group
University of Mannheim
Mannheim, Germany

anna@informatik.uni-mannheim.de

Benedikt Wichtlhuber
Data and Web Science Group
University of Mannheim
Mannheim, Germany

jwichtlh@mail.uni-mannheim.de

Christian Bizer
Data and Web Science Group
University of Mannheim
Mannheim, Germany

chris@informatik.uni-mannheim.de

ABSTRACT
Product matching is a central task within e-commerce applications
such as price comparison portals and online market places. State-
of-the-art product matching methods achieve F1 scores above 0.90
using deep learning techniques combined with huge amounts of
training data (e.g >100K pairs of offers). Gathering and maintaining
such large training corpora is costly, as it implies labeling pairs
of offers as matches or non-matches. Acquiring the ability to be
good at product matching thus means a major investment for an
e-commerce company. This paper shows that the manual labeling
of training data for product matching can be replaced by relying
exclusively on schema.org annotations gathered from the public
Web. We show that using only schema.org data for training, we are
able to achieve F1 scores between 0.92 and 0.95 depending on the
product category. As new products appear everyday, it is important
that matching models can be maintained with justifiable effort. In
order to give practical advice on how to maintain matching mod-
els, we compare the performance of deep learning and traditional
matching models on unseen products and experiment with differ-
ent fine-tuning and re-training strategies for model maintenance,
again using only schema.org annotations as training data. Finally,
as using the public Web as distant supervision carries inherent
noise, we evaluate deep learning and traditional matching models
with regards to their label-noise resistance and show that deep
learning is able to deal with the amounts of identifier-noise found
in schema.org annotations.

CCS CONCEPTS
• Information systems → Entity resolution; Electronic com-
merce; • Computing methodologies→ Neural networks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WIMS 2020, June 30-July 3, 2020, Biarritz, France
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7542-9/20/06. . . $15.00
https://doi.org/10.1145/3405962.3405964

KEYWORDS
e-commerce, product matching, schema.org, distant supervision,
deep learning
ACM Reference Format:
Ralph Peeters, Anna Primpeli, Benedikt Wichtlhuber, and Christian Bizer.
2020. Using schema.org Annotations for Training and Maintaining Product
Matchers. In The 10th International Conference on Web Intelligence, Mining
and Semantics (WIMS 2020), June 30-July 3, 2020, Biarritz, France. ACM,
Biarritz, France, 10 pages. https://doi.org/10.1145/3405962.3405964

1 INTRODUCTION
Product matching is the task of deciding if two offers originating
from two different websites refer to the same real-world product.
This is a central task for e-commerce applications such as online
market places, price comparison portals, as well as for the building
of product knowledge graphs [29]. Product matching is not a trivial
task, because for marketing reasons merchants present products in
different ways in their Web shops.

Product matching has a long history in research and practice.
Early approaches to product matching applied rule- and statistics-
based methods [11]. Since the early 2000s, machine learning based
methods dominate product matching [17]. Due to the successes of
deep learning in fields like computer vision and natural language
processing, the research focus has shifted towards applying these
methods also for product matching [9, 12, 21, 25]. Using labeled
data from a major retailer, Mudgal et al. [21] showed that deep
learning can significantly outperform traditional machine learning-
based matching methods reaching a performance of >90% F1 given
enough training data (>100K pairs of offers). The bottleneck for
applying the proposed methods is that gathering and maintaining
such large training data corpora means a major investment for
e-commerce companies. More recent work focuses on using pre-
trained languagemodels based on the Transformer architecture [27]
and leveraging the pre-training/fine-tuning paradigm to improve
on these results [6, 19].

In this paper we show that it is possible to achieve similarly
high matching performance by using the Semantic Web as single
source of training data. More specifically, we show that by using
only schema.org annotations from the public Web, it is possible
to train deep neural networks that achieve F1 scores between 0.92

https://doi.org/10.1145/3405962.3405964
https://doi.org/10.1145/3405962.3405964

WIMS 2020, June 30-July 3, 2020, Biarritz, France Peeters et al.

Figure 1: WDC Product Data Corpus creation pipeline.

and 0.95 depending on the product category. We rely on annotated
product identifiers such as GTINs and EANs together with a specific
data cleansing workflow for clustering together product offers from
different shops referring to the same product. In a second step, we
use this clustering as distant supervision to automatically build
training sets for learning reliable product matchers.

New products appear every day. This requires product matchers
to either generalize well to unseen products or be continuously
maintained using training data for the new products. We show
that deep learning-based matchers outperform traditional matchers
for unseen products. Nevertheless, for reaching a matching perfor-
mance of >90% in F1 for new products, the matchers need to be
fine-tuned or re-trained using training data including offers for the
new products. We show that schema.org annotations from the Web
can also replace manual labeling for new products and compare
different fine-tuning and re-training strategies for deep product
matchers.

Finally, using schema.org product ID annotations, such as GTINs
or MPNs, as distant supervision for product matching carries a
certain level of inherent noise. It is therefore important to explore
the label-noise resistance of the used learning method. We show
that deep product matchers are able to deal with the inherent noise,
but rapidly lose performance, when the level of label-noise is further
increased.

In comparison to our paper at the Workshop on e-Commerce
and NLP (ECNLP2019) [24], which focuses on the creation of the
product data corpus using schema.org annotations and only con-
tained preliminary experimental results, the contributions of this
paper are: (1) new experimental results based on a larger manually
verified gold standard as well as an improved assignment of offers
to product categories, (2) an analysis of the impact of different sizes
of training sets, derived from schema.org annotations, on different
product matching algorithms, (3) an evaluation of the performance
on unseen products, (4) a comparison of three different methods of
maintaining learned deep product matchers, when unseen products
are introduced, (5) an evaluation of the noise resistance of different
matching algorithms over increasing levels of label-noise.

The paper is organized as follows: The first part of Section 2
explains, how we used schema.org annotations for building large
scale training sets for product matching as well as an evaluation
gold standard. The second part details the deep and the traditional
learning algorithms used as well as the experimental setup and
results for training product matchers. Section 3 explores the gener-
alization performance of the product matching models on unseen
products and details several fine-tuning and re-training approaches
for maintaining deep product matchers. The impact of label-noise
on the product matchers is explored in Section 4. Finally, Section 5

discusses related work and Section 6 concludes the paper with a
summarization of the results.

2 TRAINING PRODUCT MATCHERS USING
SCHEMA.ORG ANNOTATIONS AS DISTANT
SUPERVISION

The Web Data Commons project has shown that at least 850,000
websites (PLDs) use the schema.org vocabulary to annotate product
offers [4]. The properties that are most widely annotated are name,
description, brand and image. Interestingly and crucial for using
semantic annotations from different websites to train matching
methods, 30.5% of the websites annotate product identifiers, such
as manufacturer part numbers (MPNs), global trade item numbers
(GTINs), or stock keeping units (SKUs). Despite of carrying some
noise, these identifiers allow offers for the same product from dif-
ferent e-shops to be grouped, which can be considered as distant
supervision, for training matching methods.

We use the schema.org/Product subset provided by theWeb Data
Commons project (November 2017)1. The subset contains 809 mil-
lion schema.org/Product (s:Product) and schema.org/Offer (s:Offer)
entities. In the following, we describe how we cleanse the dataset,
derive different size training sets for different product categories
and build a gold standard for evaluating product matchers.

2.1 Data Cleansing Pipeline
Figure 1 gives an overview of the data cleansing pipeline that we
use to group offers into clusters. In the following, we describe each
of the cleansing steps. More details about the cleansing pipeline
are found in [24].

Filtering of product offers with annotated identifiers: We aim
to filter all s:Product and s:Offer entities that have the follow-
ing identifier related properties: sku, mpn, identifier, productID,
gtin14, gtin13, gtin12 and gtin8. Considering common annotation
errors such as the usage of non-existing vocabulary terms, e.g.
schema:Product/Offer/sku [20], we extend the filtering to any entity
of the subcorpus matching the following regular expression:
. ∗ /(𝑔𝑡𝑖𝑛8|𝑔𝑡𝑖𝑛12|𝑔𝑡𝑖𝑛13|𝑔𝑡𝑖𝑛14|𝑠𝑘𝑢 |𝑚𝑝𝑛 |𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 |𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝐼𝐷).
This first filtering step results in 121M offers.

Removal of listing pages: Product offers which are part of listing
pages or advertisements are not expected to be not accompanied by
useful textual description that can help thematching task. Therefore
we want to remove them from the corpus. We do this by apply-
ing a heuristic based on the following features: amount of s:Offer
1http://www.webdatacommons.org/structureddata/2017-
12/stats/schema_org_subsets.html

Using schema.org Annotations for Training and Maintaining Product Matchers WIMS 2020, June 30-July 3, 2020, Biarritz, France

Table 1: Distribution of clusters, offers, and cluster group sizes per product category - English WDC Product Data Corpus

Category % Clusters % Offers # Clusters of Size
[3-4] [5-10] [11-20] [>20]

Tools_and_Home_Improvement 12.37 9.41 27,228 8,336 4,648 1,325
Home_and_Garden 10.59 8.89 33,812 16,873 5,364 1,997
Automotive 8.95 8.37 22,808 10,143 4,094 4,421
Other_Electronics 6.74 5.27 21,590 5,603 11,55 508
Clothing 5.93 6.67 40,767 32,915 3,177 1,840
Books 5.36 4.22 19,771 6,361 654 360
Watches_and_Jewelry 4.94 4.95 19,526 11,245 2,112 1,436
Shoes 4.42 4.15 27,948 9,080 1,468 381
Health_and_Beauty 4.23 3.93 22,852 7,429 1,302 537
Toys_and_Games 4.01 3.21 11,196 3,109 968 521
Office_Products 4.01 13.13 27,393 10,875 3,052 1,561
Sports_and_Outdoors 3.84 5.45 16,930 6,927 1,556 2,602
Grocery_and_Gourmet_Food 3.51 3.01 20,428 3,416 416 243
Computers_and_Accessories 3.03 4.04 12,917 6,694 3,257 4,184
Luggage_and_Travel_Gear 2.63 2.68 21,871 7,914 704 385
CDs_and_Vinyl 2.49 1.80 4,251 1,514 486 71
Camera_and_Photo 2.38 1.97 11,583 3,851 663 134
Musical_Instruments 2.26 2.01 6,218 1,176 240 180
Cellphones_and_Accessories 2.03 1.52 3,652 1,334 274 281
Others 6.28 5.33 27,781 8,561 1,972 1,378

and s:Product entities in the same url, offer description length in
terms of words and attached properties denoting advertisements
like s:Offer/RelatedTo and s:Offer/SimilarTo. The listing heuristic
achieves 94.8% on the positive class isListingOrAd and reduces the
corpus size to 58M offers.

Filtering by identifier value length: After manually inspecting a
subset of the product identifier values, we discover three common
erroneous annotation practices that lead to invalid identifiers: con-
tainment of non-alphanumeric characters and prefixes such as ean,
sku and isbn, too long or too short values and values consisting
only of alphabetic characters. We cleanse the identifier values by
removing prefixes and non-alphanumeric characters and remove
those that after cleansing do not adhere to the schema.org annota-
tion standards and are therefore expected to be highly noisy. This
cleansing step results in 26M offers.

ID-cluster creation: We exploit the co-occurrence of identifier val-
ues and group the offers into ID-clusters. Each ID-cluster represents
the same real-world product. After grouping the clusters we apply
a post-processing cleansing step to identify and remove category
specific identifiers, such as UNSPSC. The removal of the UNSPSC
values splits some of the ID-clusters and creates 199K additional
ones. After this final cleansing step the corpus contains 26.5M prod-
uct offers from 79K distinct PLDs. The resulting offers have 18.5M
distinct identifier values and are grouped in 16.3M ID-clusters. We
filter the English offers based on the top-level-domain of the url of
each offer and derive the English WDC Product Data Corpus with
16.4M offers from 43K e-shops grouped in 10M clusters.

Categorization: The ID-clusters are categorized into a product
categorization schema suggested by a publicly available Amazon

product dataset2. We train a one-vs-rest ensemble of Logistic Re-
gression classifiers for categorizing product offers. For training and
testing we manually annotate 2,115 clusters while considering an
annotation limit of at least 50 clusters per product category. The en-
semble achieves 85% 𝐹1𝑚𝑖𝑐𝑟𝑜 on the test set over all categories. All
experimental details and statistics on the gold standard are reported
on the WDC Product Data Corpus Categorization Web page3. The
learned model is applied to the English corpus and assigns a prod-
uct category to each ID-cluster. Table 1 presents the distribution of
clusters, offers and cluster group sizes per category.

Quality of the WDC Product Data Corpus: Despite the cleansing
steps, it is still expected that the WDC Product Data Corpus is
subject to remaining noise. We evaluate the corpus quality by man-
ually inspecting 900 pairs of offers from the same ID-clusters and
verifying if they describe the same real-world product. The sam-
pled pairs derive from ID-clusters of different product categories
and cluster sizes: small (3-5 offers), medium (6-80 offers), and large
(>80 offers). The evaluation results show that 94% of the sampled
offer pairs are true matches, 3% are wrongly matched offers and for
3% of the cases both annotators involved in the evaluation quality
process were unsure on the correct label, mostly because of short
titles and descriptions. Further analysis on the wrongly clustered
offers distinguished two main types of errors: (1) wrong identifier
values, i.e. the identifier is the same, but the offers refer to different
products and (2) grouping errors caused by the design decision of
grouping based on identifier value co-occurrence. Further details
about the error analysis can be found in [4].

2http://jmcauley.ucsd.edu/data/amazon/
3http://webdatacommons.org/categorization/

WIMS 2020, June 30-July 3, 2020, Biarritz, France Peeters et al.

2.2 Deriving Evaluation Gold Standards and
Training Sets

We derive gold standards for evaluating product matching methods
from the English WDC Product Data Corpus. Version 2 of the gold
standards, which we released in October 2019, consists of 1100
pairs of offers from each of the following four product categories:
Computers & Accessories, Camera & Photo, Watches and Shoes. Each
gold standard covers 150 products (ID-clusters) from a category
with positive and negative pairs. Overall offers for more than these
150 products are contained in the gold standards, serving only as
negative correspondences to the 150 products without positives of
their own. For each of the 150 products the gold standard contains
2 matching pairs of offers (positives) and 5 or 6 non-matching pairs
of offers (negatives). All pairs of offers were manually reviewed.
The aim was to include a diverse selection of products as well as a
good mixture of difficult and easy to match pairs of offers into the
gold standard. To this end, similarity metrics are applied to different
attributes to sort pairs and collect hard matching cases (positives
and negatives) for the gold standard, while also including randomly
selected offer pairs. The clustering of semantically annotated ID-
values serves as distant supervision, separating matches (intra-
cluster) from non-matches (inter-cluster).

Table 2: Gold standard profiling

Category #Products # Pos.
Pairs

Neg.
Pairs

% Density
T D B S

Computers 150(745) 300 800 100 82 42 22
Cameras 150(563) 300 800 100 73 25 7
Watches 150(617) 300 800 100 71 15 7
Shoes 150(563) 300 800 100 70 8 2
All 600(2485) 1,200 3,200 100 74 23 10

Table 2 shows statistics of the gold standard, including the per-
centage of pairs per category, where both offers contain a value for
the respective attribute. We choose the four textual attributes title
(T), description (D), brand (B) and specification table content (S) for
our experiments. Furthermore, we focus mostly on the Computers
category, representing more structured products, as well as the set
combining all categories for the experiments in this paper.

To build training sets, the ID-clusters of all products contained
in the respective gold standard are used to automatically build
positive pairs inside clusters and negative pairs across clusters using
a heuristic similar to the one used for building the gold standards.
These pairs are not checked manually. The training pairs represent
the main result of the application of semantic annotations described
in this paper. Table 3 shows the statistics of the training sets. More
details about the heuristics used for creating the gold standards and
training sets can be found on the project’s website4.

2.3 Learning Product Matchers
In order to demonstrate the utility of the training sets for learning
product matchers, we run experiments for all deep learning mod-
els that are part of the Deepmatcher5 framework [21]. These are
4http://webdatacommons.org/largescaleproductcorpus/v2/
5https://github.com/anhaidgroup/deepmatcher

Table 3: Training set profiling

Category # Pos.
Pairs

Neg.
Pairs

% Density
T D B S

Small
Computers 722 2,112 100 51 34 21
Cameras 486 1,400 100 53 21 4
Watches 580 1,675 100 43 15 7
Shoes 530 1,533 100 49 8 0
All 2,318 6,720 100 49 21 10

Medium
Computers 1,762 6,332 100 51 34 20
Cameras 1,108 4,147 100 57 22 4
Watches 1,418 4,995 100 44 14 6
Shoes 1,214 4,591 100 49 7 0
All 5,502 20,065 100 50 20 9

Large
Computers 6,146 27,213 100 51 31 18
Cameras 3,843 16,193 100 60 25 3
Watches 5,163 21,864 100 45 13 6
Shoes 3,482 19,507 100 51 6 0
All 18,634 84,777 100 51 19 8

XLarge
Computers 9,690 58,771 100 50 30 16
Cameras 7,178 35,099 100 66 29 3
Watches 9,264 52,305 100 50 11 5
Shoes 4,141 38,288 100 53 5 0
All 30,273 184,463 100 54 19 7

binary classifiers that compare two products by first converting all
word tokens into an embedding space attribute-wise, e.g. using fast-
Text embeddings [5]. The embedding sequences of each attribute
of the two products are then summarized and aggregated before
concatenation of the resulting per-attribute embeddings as input to
a classification module. The models in the Deepmatcher framework
mainly differ on the complexity of the summarization step. The SIF
model aggregates embedding sequences by simply averaging them
using smooth inverse frequency [2]. The RNN uses a bi-GRU, while
the Attention model employs decomposable attention [22]. Finally,
Hybrid is a combination of the latter two models and the most
complex. For more in-depth information about these models, we
refer the reader to the original publication [21].

Experimental Setup: In preparation for the experiments, punctu-
ation is removed, all word tokens are lower-cased and stopwords
are removed using the NLTK6 stopword list. We run experiments
for all product categories as well as their combination as described
in Section 2 for all four training set sizes and all four Deepmatcher
models. As input embeddings we choose character-based fastText
embeddings pre-trained on Wikipedia7, as these have shown to
perform well for the task of product matching [21]. Additionally,
we use the brand, title and description attributes of the WDC Prod-
uct Data Corpus to derive self-trained fastText embeddings as a

6https://www.nltk.org/
7https://fasttext.cc/docs/en/pretrained-vectors.html

Using schema.org Annotations for Training and Maintaining Product Matchers WIMS 2020, June 30-July 3, 2020, Biarritz, France

comparison. These are trained using the default fastText param-
eters. All training sets are split into training and validation sets
using a stratified 80:20 split. All Deepmatcher experiments are run
three times for 15 epochs each and results are averaged. All models
use default parameters apart from pos-neg ratio, which allows to
penalize errors on the minority class more severely in imbalanced
datasets. The pos-neg ratio is set to the actual ratio found in each
training set. Once training is completed the model is evaluated on
the corresponding gold standard.

In a second step, we repeat these experiments, while allowing the
model to propagate gradients back to the embedding layer, which
is not the case for the standard Deepmatcher implementation that
uses fixed embeddings. This end-to-end training essentially allows
the model to fine-tune the embeddings for the product matching
task.

Finally, for both, standard Deepmatcher and the end-to-end vari-
ant, we select the Computers XLarge training set and optimize
the parameters of the best performing model (RNN) using random
search to showcase possible performance gains of an optimized
model. The adjusted parameters include learning rate, learning
rate decay, mini batch size as well as pos-neg ratio. Every selected
parameter combination is trained three times and the results are
averaged to find the best performing combination.

Baselines: The Magellan [16] framework and a simple baseline
using word co-occurrence are trained using the same training and
validation sets, to allow a comparison to traditional methods. Mag-
ellan offers automatic feature creation using string-based similarity
metrics like Levenshtein and Jaccard similarity. These features are
then used as input to scikit-learn [23] classifiers. The word co-
occurrence method uses a binary feature vector of words occurring
in the attributes of both products without regard for attribute bor-
ders. The vocabulary of words is derived using the words occurring
in the training set. The resulting feature vector is then used as
input to scikit-learn classifiers. For both Magellan and word co-
occurrence hyperparameters are tuned using automatic grid-search.
All experiments are run using different combinations of the features
title, description, brand and specification table content.

Results: Table 4 shows the results of the experiments on the
largest of the four training sets for each product category. Magellan
performs the worst overall with F1 values between 60 and 69%. The
word co-occurrence baseline reaches up to 84% F1 with significantly
higher precision than Magellan. All of the Deepmatcher approaches
achieve at least 90% F1 while peaking at nearly 96% F1 for the
Watches category. Overall the RNN-based model has proven to
consistently perform the best for the product matching task on
this dataset. These results show that the derivation of training data
using schema.org annotations allows training product matchers
that can achieve a high level of performance comparable to using
manually created training sets.

When comparing standard Deepmatcher to the end-to-end vari-
ation, it is evident that fine-tuning of the embedding layer can
improve performance by up to 4% F1, which can be mostly credited
to improved recall. Parameter optimization leads to nearly 2% higher
F1 for the Computers set and standard RNN Deepmatcher, while
improving mostly on precision. The end-to-end RNN parameter
optimization did not lead to improved performance.

The comparison of pre-trained and self-trained embeddings
shows that self-training can marginally increase the performance
for some product categories, but overall pre-trained embeddings
lead to higher results on average. Overall, fine-tuning pre-trained
embeddings apparently offers significant performance gains with-
out the overhead of self-training on large corpora. An inspection
of the training times of the Computers RNN and its end-to-end
equivalent shows an increase of 6% on average for the latter, which
is acceptable considering the possible gains in performance.

Figure 2 shows the learning curves for the four Deepmatcher
models as well as the end-to-end variant of the RNN on the Com-
puters and combined gold standards. This is representative of the
learning curves of all product categories with onlyminor differences
among them. The curve shows that the RNN model significantly
surpasses the other models for training sets of the size large. The
overall improvement from large to XLarge was up to 3% F1 in our
experiments, thus showing that training sets of the size of large are
already close to the maximum observed performance and may be
preferable for practical applications due to the significantly lower
amount of required training labels. The end-to-end variant of Deep-
matcher surpasses the standard for medium sized training sets and
thus should be the preferred way of training if a medium-sized
training set is available.

Figure 3 shows the learning curves of the best performing Deep-
matcher model (end-to-end RNN) compared to those of the tradi-
tional baselines on the Computers and combined gold standards.
Whereas Magellan does not improve with training sets of larger
size, both word co-occurrence and Deepmatcher show a strong
increase with training sets of sizemedium. The large set marginally
improves the performance of word co-occurence by around 3% F1
while Deepmatcher gains nearly 10%. Surprisingly, for all product
categories the performance of Deepmatcher on the smallest training
set is greater than that of the traditional methods, which makes it
the preferred method if resources for training and maintaining deep
learning models are available. Nevertheless, practitioners looking
to apply these models should aim for training sets of at least size
medium for good performance.

Overall the results demonstrate that using schema.org annota-
tions and distant supervision for building training sets allows to
learn models that can achieve 90% and more F1 over several product
categories and consequently are a viable alternative to manually
labeled datasets, especially when considering the required size and
the human workload this would incur.

3 MAINTAINING MATCHERS TO COVER
NEW PRODUCTS

New products appear on the market every day. For e-commerce
applications it is thus crucial to be able to cluster offers for new
products and correctly distinguish them from offers for known
products. In the following, we investigate to which extent matchers
that were trained for one set of products are able to generalize to
new, unseen products. Afterwards, we experiment with different
approaches for fine-tuning matchers using offers for previously
unseen products that we again gather from the Web.

Experimental Setup: In order to evaluate how matchers gener-
alize to unseen products, we randomly select 30 out of the 150

WIMS 2020, June 30-July 3, 2020, Biarritz, France Peeters et al.

Table 4: Results on training set XLarge

Category Model Features P R F1 𝜎

Magellan
Computers XGBoost T+D+B+S 72.32 65.33 68.65 -
Cameras XGBoost T+D+B+S 73.87 54.67 62.84 -
Watches XGBoost T+D+B+S 74.15 50.67 60.20 -
Shoes RandomForest T+D+B+S 51.33 83.67 63.62 -
All RandomForest T+D+B+S 48.68 78.42 60.07 -

Word Co-Occurrence
Computers LinearSVC T+D+B+S 86.74 80.67 83.59 -
Cameras LinearSVC T+D+B+S 81.51 64.67 72.12 -
Watches LinearSVC T+D+B+S 88.14 69.33 77.61 -
Shoes LogisticRegression T 86.14 58.00 69.32 -
All LogisticRegression T+D+B+S 85.97 66.92 75.26 -

Deepmatcher - Pre-Trained fastText
Computers RNN T+D+B 89.75 91.89 90.80 0.79
Computers(opt.) RNN T+D+B 93.07 92.11 92.56 0.76
Cameras RNN T+D+B+S 89.22 89.22 89.21 1.68
Watches RNN T+D+B+S 92.73 94.22 93.45 0.93
Shoes RNN T 93.16 92.11 92.61 1.05
All RNN T+D 92.04 88.36 90.16 0.43

Deepmatcher - Self-Trained fastText
Computers RNN T+D+B 89.66 94.22 91.88 0.79
Cameras RNN T+D 89.74 85.44 87.53 1.34
Watches RNN T+D 93.66 91.78 92.70 0.95
Shoes RNN T 90.65 90.45 90.54 0.85
All RNN T+D 90.98 87.31 89.10 0.39

Deepmatcher(End-to-End) - Pre-Trained fastText
Computers RNN T 94.00 97.00 95.46 0.70
Computers(opt.) RNN T+D+B 93.76 96.78 95.25 0.31
Cameras RNN T 91.44 93.00 92.18 0.70
Watches RNN T+D 94.58 96.89 95.72 0.50
Shoes RNN T 95.58 93.78 94.67 0.54
All RNN T+D+B 91.25 93.38 92.30 0.31

Deepmatcher(End-to-End) - Self-Trained fastText
Computers RNN T+D+B 93.88 97.16 95.50 0.35
Cameras RNN T 93.16 92.11 92.63 0.27
Watches RNN T+D 94.84 95.17 95.00 1.45
Shoes RNN T 93.25 91.56 92.38 0.25
All RNN T+D+B 92.40 93.62 92.98 0.11

products having positive and negative pairs in the gold standard.
We treat these 30 products as unseen and split the gold standard
of the category Computers as well as the Computers XLarge train-
ing set by removing all pairs containing any of these 30 products
from both sets into a new training set and gold standard. Table 5
provides statistics about the resulting training and test sets for seen
and unseen products.

Generalization to Unseen Products: In a first experiment, we train
different matching models using the training data for the seen prod-
ucts and subsequently evaluate the models only using the gold
standard for unseen products. Table 6 shows the results for the
evaluation of the trained model on seen and unseen products for
the Deepmatcher as well as the Magellan and word co-occurrence

baselines. The performance of Deepmatcher on the seen products
is comparable to the results obtained in Table 4 for the Computers
XLarge training set. It is evident that performance on unseen prod-
ucts drops considerably for Deepmatcher and word co-occurrence
with losses of 16% and 40% F1 respectively. Magellan is impacted
the least with an absolute loss of 4% in F1. However, the F1 per-
formance for unseen products of all three models is clearly below
0.9 and thus likely insufficient for e-commerce applications. Thus,
the continuous maintenance of product matchers to cover new
products is necessary.

Fine-tuning Matchers for New Products: By regularly recrawl-
ing e-shops that are known to annotate product identifiers using
schema.org terms, it is possible to monitor the appearance of new

Using schema.org Annotations for Training and Maintaining Product Matchers WIMS 2020, June 30-July 3, 2020, Biarritz, France

(a) All (b) Computers

Figure 2: Comparison of Deepmatcher models

(a) All (b) Computers

Figure 3: Comparison Deepmatcher to baselines

Table 5: Datasets for seen and unseen new products

Category # Pos.
Pairs

Neg.
Pairs

% Dens.
T D B

Gold Unseen 59 154 100 89 57
Gold Seen 241 646 100 90 56
Train Unseen 264 3,562 100 66 49
Train Seen 7,488 43,454 100 69 49
Train Comb. 7,752 47,016 100 69 49

products on the Web (= products having IDs which have not been
contained in previous crawls) as well as to gather heterogeneous
offers for these products. The crawled offers for new products can
subsequently be used for the maintenance of the existing product
matchers.

In the following, three methods of adapting the product matcher
to previously unseen products are explored. Firstly, the trained
model is fine-tuned by continuing training using just the small
training set containing the unseen products from Table 5. Secondly,
the model is fine-tuned using the training sets for seen as well as
previously unseen products, i.e. all available training data. Both fine-
tuning approaches are evaluated after every two trained epochs.
The optimizer for the model is reset before fine-tuning. Finally,
a model is trained from scratch using all of the training data for
comparison.

Figure 4 shows the results of the two fine-tuning approaches
continuously evaluated on seen and unseen products for up to 26
epochs. Fine-tuning the model using only training data for the
unseen products achieves around 90% F1 after 8 epochs, while
performance on the seen products drops to around 89% F1, probably
due to the network forgetting patterns learned for them because of
noisy weight updates. When training using the combined training

WIMS 2020, June 30-July 3, 2020, Biarritz, France Peeters et al.

Table 6: Results for seen and unseen new products

Model Seen Unseen
P R F1 𝜎 P R F1 𝜎 Δ𝐹1

Word Co-Occurrence 84.9 81.7 83.3 - 72.0 30.5 42.9 - 40.4
Magellan 73.1 64.3 68.4 - 70.0 59.3 64.2 - 4.2
Deepmatcher 92.8 91.0 91.9 0.5 76.2 75.7 75.9 2.9 12.6

(a) Fine-tuning on full set (b) Fine-tuning on new data only

Figure 4: Fine-tuning product matchers

sets, the performance on the seen products does not experience
this drop and can even further increase by a small amount. For the
unseen products, good performance of 90% F1 is achieved after 10
epochs. This further increases until it can match the performance
on seen products after 16 epochs.

The two fine-tuning approaches differ heavily on the size of
the training set used (3,826 vs 50,942 pairs) and subsequently on
training time per epoch. In our experiments, one epoch of fine-
tuning on the large set took approximately 30 times longer than
training one epoch on the small set, making the latter approach
more relevant in time-constrained scenarios. Fully re-training the
model for 15 epochs on the combined training set achieves 91% F1
on the seen and 90% F1 on the unseen products, which is marginally
less performant than fine-tuning an existing model with the same
training set over the same amount of epochs, making this the least
desirable approach for matcher maintenance.

4 IMPACT OF NOISY TRAINING DATA
The usage of schema.org data from a large number of websites as
distant supervision implies a certain level of noise in the derived
labels. The results of Section 2.3 show that the 6% label-noise inher-
ent to the WDC Product Data Corpus, as explained in Section 2.1,
still allows the learning of high-performance product matchers.

In order to investigate the impact of further label-noise on the
performance of deep learning and traditional methods, we perform
a set of experiments with additional label-noise. For this purpose
the labels of 5, 10, 20, 30 and 40% of labels in the Computers XLarge
training set are randomly flipped. Both positive and negative labels

are affected equally. Since the WDC Product Data Corpus contains
approx. 6% inherent label noise, this serves as the minimum possible
noise value for the experiments. We use the optimized standard
Deepmatcher RNN model on the Computers XLarge training set for
this experiment. The model is trained for 15 epochs using the same
train/validation split as in the experiments presented in Section 2.3.

Table 7 shows the results of this experiment. The Magellan and
word co-occurrence models are capable of handling 5% in additional
noise with only marginal losses in performance. Deepmatcher al-
ready loses 10% F1 in this scenario. The addition of another 5% does
impact all of them significantly, with Magellan losing 4%, word co-
occurrence 5% and Deepmatcher a further 5% F1. With increasing
label-noise, all models continue to drop in performance until rapid
deterioration happens around the mark of 30% and 40% noise for
all models. Interestingly, Deepmatcher still performs comparably
better, but the difference in performance to the traditional methods
is only marginal. Overall, the non deep learning models can handle
up to 10% label-noise with marginal loss in performance, while
Deepmatcher takes a large hit with any increase in label noise.
With further addition of label-noise all models rapidly decrease in
performance. For the process of automatically deriving training
labels using distant supervision it is thus very important to make
sure label-noise is minimized as much as possible. In our work
we showed that a noise level of approx. 6% in the training data
allows learning high-performance deep product matchers. Tradi-
tional methods seem to be more noise-resistant up until around
11% label-noise.

Using schema.org Annotations for Training and Maintaining Product Matchers WIMS 2020, June 30-July 3, 2020, Biarritz, France

Table 7: Impact of Noisy Training Data

Magellan Word Co-Occur. Deepmatcher
Noise % P R F1 P R F1 P R F1 𝜎

inherent 74.13 64.00 68.69 84.91 80.67 82.74 93.12 93.11 93.11 0.58
+5 74.31 63.67 68.59 85.20 78.67 81.80 84.75 83.11 83.90 0.43
+10 68.66 61.33 64.79 79.42 73.33 76.26 79.82 77.56 78.66 0.36
+20 48.24 91.33 63.13 71.38 69.00 70.17 71.83 75.67 73.69 1.48
+30 36.40 92.33 52.21 48.12 85.33 61.54 45.49 71.67 55.63 2.98
+40 30.65 91.33 45.90 31.52 63.67 42.16 35.59 62.45 45.29 1.59

5 RELATEDWORK
Entity Resolution/Product Matching: Entity Resolution has a re-

search history of more than 50 years [11]. It aims to solve the
problem of deciding if two entity mentions refer to the same real-
world entity. Approaches to solving the problem can be broadly
divided in rule-based, crowd-based and machine learning-based,
further divided into unsupervised, weakly supervised and super-
vised methods [7, 10]. Recent unsupervised methods in this area
are AutoER [28] which relies on Generative Modelling and a graph-
based approach from Zhu et al. [31]. TheMagellan framework repre-
sents an end-to-end implementation of a supervised approach using
attribute-wise similarity metrics as features [16]. Product Matching
is a domain-specific application of Entity Resolution and has been
researched for the past 30 years [17]. Some recent unsupervised
matching methods to solve the problem focus on clustering [1, 13].
Other researchers frame the problem as a classification task and
focus on supervised learning using e.g. attribute similarities as
features [14, 18].

Deep Learning for Entity Resolution/ProductMatching: Deep Learn-
ing methods started to move into the focus of the research com-
munity in 2018 with DeepER [9], which is considered a pioneering
work in the area of entity matching with deep learning, introducing
two DL networks inspired by architectures from the NLP area of
research. The Deepmatcher framework which is used in this paper
incorporates variants of these models as described by Mudgal et
al. [21], who have shown that deep learning methods outperform
symbolic methods on product data with highly textual attributes,
which we are able to replicate. Shah et al. [25] experiment with
deep learning for product matching, employing fastText for product
classification, while framing the problem as multi-class classifica-
tion, as well as binary classification with deep siamese networks.
Barbosa [3] experimented with a combination of symbolic and
sub-symbolic entity representations. More recently, Fu et al. [12]
developed a combination of sub-symbolic embedding and sym-
bolic string/number based methods that learns to choose among
a set of metrics using either subsymbolic or symbolic features de-
pending on the attribute. Kasai et al. [15] and Thirumuruganathan
et.al [26] focus on transfer learning for Entity Resolution using
neural approaches, the former in combination with Active Learn-
ing. More recent work follows the trend of using fully attention-
based approaches to capture contextual information [30]. Especially
language models following the pre-training/fine-tuning paradigm
based on the Transformer architecture [27] like BERT [8] show
promising results for the tasks of entity resolution and product

matching. Brunner and Stockinger [6] do a preliminary analysis
of the suitability of different Transformer models and Li et al. [19]
propose an entity resolution system using pre-trained language
models in combination with advanced pre-processing and data aug-
mentation techniques. They evaluate their system on the datasets
presented in this paper among others and show small improve-
ments (+1%) over the end-to-end variant of Deepmatcher presented
in this paper for two product categories, as well as substantial im-
provements (>5%) when using the small and medium training sets.
They did not investigate the performance of their system for new
products as well as its noise resistance.

6 CONCLUSION
Schema.org annotations in Web pages are widely used by major
search engines for rendering rich snippets in search results. This
paper described an alternative use of the annotations: By using
schema.org annotations as training data for learning product match-
ers, it becomes possible to completely replace manual labeling while
maintaining a matching performance above 0.9 F1. This means that
the costly task of manually labeling product offers as matches or
non-matches can be automated using the Semantic Web.

New products appear on the Web every day. It is thus important
for product matchers to either generalize well to them or to be
easily adaptable making them maintainable. To adapt trained deep
product matchers, two fine-tuning methods were compared with
regards to performance on old and new products, trading re-training
time for F1 performance. In a real-world scenario, either of them or
a hybrid may be applied depending on the use-case.

Finally, we have shown that deep product matchers can handle
the noise inherent to datasets created using schema.org annotations
for distant supervision. Adding more label-noise leads to quick
deterioration of performance.

The utility of schema.org annotations from large numbers of
websites as training data for machine learning tasks is not restricted
to the use case of product matching. Other use cases include senti-
ment analysis, information extraction and taxonomy matching [4].
The product corpus, the training sets, the gold standards8 as well as
the code9 for replicating the experiments presented in this paper are
available for public download and we invite interested researchers
to use them to compare their approaches to the results presented
in this paper.

8http://webdatacommons.org/largescaleproductcorpus/v2/
9https://github.com/Weyoun2211/wdc-lspc-v2

WIMS 2020, June 30-July 3, 2020, Biarritz, France Peeters et al.

The authors acknowledge support by the state of Baden-Württ-
emberg through bwHPC and the German Research Foundation
(DFG) through grant INST 35/1134-1 FUGG.

REFERENCES
[1] L. Akritidis and P. Bozanis. 2018. Effective Unsupervised Matching of Product

Titles with K-Combinations and Permutations. In 2018 Innovations in Intelligent
Systems and Applications (INISTA). 1–10.

[2] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2019. A simple but tough-to-beat
baseline for sentence embeddings. In 5th International Conference on Learning
Representations, ICLR 2017.

[3] Luciano Barbosa. 2019. Learning Representations of Web Entities for Entity
Resolution. International Journal of Web Information Systems 15, 3 (2019), 346–
358.

[4] Christian Bizer, Anna Primpeli, and Ralph Peeters. 2019. Using the Semantic
Web as a Source of Training Data. Datenbank-Spektrum 19, 2 (2019), 127–135.

[5] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. En-
riching Word Vectors with Subword Information. Transactions of the Association
for Computational Linguistics 5 (Dec. 2017), 135–146.

[6] Ursin Brunner and Kurt Stockinger. 2020. Entity Matching with Transformer
Architectures - a Step Forward in Data Integration. In International Conference
on Extending Database Technology, 30 March-2 April 2020.

[7] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis,
and Kostas Stefanidis. 2019. End-to-End Entity Resolution for Big Data: A Survey.
arXiv:1905.06397 [cs] (2019).

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-Training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the Association for Computational Linguistics.
4171–4186.

[9] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad
Ouzzani, and Nan Tang. 2018. Distributed Representations of Tuples for Entity
Resolution. Proc. VLDB Endow. 11, 11 (2018), 1454–1467.

[10] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. 2007. Duplicate Record
Detection: A Survey. IEEE Transactions on Knowledge and Data Engineering 19, 1
(2007), 1–16.

[11] Ivan P. Fellegi and Alan B. Sunter. 1969. A Theory for Record Linkage. J. Amer.
Statist. Assoc. 64, 328 (1969), 1183–1210.

[12] Cheng Fu, Xianpei Han, Le Sun, Bo Chen, Wei Zhang, Suhui Wu, and Hao Kong.
2019. End-to-End Multi-Perspective Matching for Entity Resolution. In Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence.
4961–4967.

[13] Vishrawas Gopalakrishnan, Suresh Parthasarathy Iyengar, Amit Madaan, Rajeev
Rastogi, and Srinivasan Sengamedu. 2012. Matching Product Titles Using Web-
Based Enrichment. In Proceedings of the 21st ACM International Conference on
Information and Knowledge Management. 605–614.

[14] Anitha Kannan, Inmar E. Givoni, Rakesh Agrawal, and Ariel Fuxman. 2011.
Matching Unstructured Product Offers to Structured Product Specifications. In
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 404–412.

[15] Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa. 2019.
Low-Resource Deep Entity Resolution with Transfer and Active Learning. In
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. 5851–5861.

[16] Pradap Konda, Sanjib Das, Paul Suganthan G. C., AnHai Doan, Adel Ardalan,
Jeffrey R. Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, Shishir
Prasad, Ganesh Krishnan, Rohit Deep, and Vijay Raghavendra. 2016. Magellan:
Toward Building Entity Matching Management Systems. Proc. VLDB Endow. 9,
12 (2016), 1197–1208.

[17] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity
resolution approaches on real-world match problems. Proc. VLDB Endow. 3, 1-2
(2010), 484–493.

[18] Hanna Köpcke, Andreas Thor, Stefan Thomas, and Erhard Rahm. 2012. Tai-
loring entity resolution for matching product offers. In Proceedings of the 15th
International Conference on Extending Database Technology. 545–550.

[19] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. arXiv:2004.00584
[cs] (April 2020).

[20] Robert Meusel and Heiko Paulheim. 2015. Heuristics for Fixing Common Errors
in Deployed Schema.Org Microdata. In Proceedings of the 12th European Semantic
Web Conference - Volume 9088. 152–168.

[21] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep Learning for Entity Matching: A Design Space Exploration. In Proceedings
of the 2018 International Conference on Management of Data. 19–34.

[22] Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. 2016. A
Decomposable Attention Model for Natural Language Inference. In Proceedings

of the 2016 Conference on Empirical Methods in Natural Language Processing.
2249–2255.

[23] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
and Vincent Dubourg. 2011. Scikit-Learn: Machine Learning in Python. Journal
of machine learning research 12 (2011), 2825–2830.

[24] Anna Primpeli, Ralph Peeters, and Christian Bizer. 2019. The WDC training
dataset and gold standard for large-scale product matching. In Workshop on
e-Commerce and NLP (ECNLP2019), Companion Proceedings of WWW. 381–386.

[25] Kashif Shah, Selcuk Kopru, and Jean David Ruvini. 2018. Neural Network Based
ExtremeClassification and SimilarityModels for ProductMatching. In Proceedings
of the 2018 Conference of the Association for Computational Linguistics, Volume 3
(Industry Papers). 8–15.

[26] Saravanan Thirumuruganathan, Shameem A. Puthiya Parambath, Mourad Ouz-
zani, Nan Tang, and Shafiq Joty. 2018. Reuse and Adaptation for Entity Resolution
through Transfer Learning. arXiv:1809.11084 [cs, stat] (2018).

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Proceedings of the 31st International Conference on Neural Informa-
tion Processing Systems (NIPS’17). 6000–6010.

[28] Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumu-
ruganathan. 2019. AutoER: Automated Entity Resolution Using Generative
Modelling. arXiv:1908.06049 [cs] (Aug. 2019).

[29] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.
2020. Product Knowledge Graph Embedding for E-Commerce. In Proceedings of
the 13th International Conference on Web Search and Data Mining (WSDM ’20).
672–680.

[30] Dongxiang Zhang, Yuyang Nie, Sai Wu, Yanyan Shen, and Kian-Lee Tan. 2020.
Multi-Context Attention for Entity Matching. In Proceedings of The Web Confer-
ence 2020 (WWW ’20). 2634–2640.

[31] Linhong Zhu, Majid Ghasemi-Gol, Pedro Szekely, Aram Galstyan, and Craig A.
Knoblock. 2016. Unsupervised Entity Resolution on Multi-Type Graphs. In The
Semantic Web – ISWC 2016. 649–667.

	Abstract
	1 Introduction
	2 Training Product Matchers using Schema.org Annotations as Distant Supervision
	2.1 Data Cleansing Pipeline
	2.2 Deriving Evaluation Gold Standards and Training Sets
	2.3 Learning Product Matchers

	3 Maintaining Matchers to Cover New Products
	4 Impact of Noisy Training Data
	5 Related Work
	6 Conclusion
	References

