|IE 678 Deep Learning

01 — Introduction

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-1

Artificial Neural Network (ANN)

e A powerful family of models inspired by biological neural networks

» Hope: should be good at what humans are good at
> Many relationships to what we learned so far (in the ML course)

e Studied to
» Understand how the brain works (connectionism, not covered here)
» Build learning machines

e Usually, ANNs have an “input layer’ and an “output layer”; they
are used for a variety of learning tasks

» Classification, regression, prediction, clustering, ...
> Feature generation / dimensionality reduction

» Supervised, semi-supervised, few-shot, unsupervised
» Generative, discriminative

e Deep learning = ANN with multiple “hidden” layers

P> Deep does not always mean many hidden layers
P> Tremendous success across many applications in recent years

2/20

Feedforward neural networks

We start with simple FNN architectures and their relationship to
models we know:

i
)

3

Softmax layer

Linear regression Softmax regression
W, ()i
O
D
D
Singular value decomposition K-means clustering

3/20

34-layer plain 34-layer residual

VGG-19

FNNs can get much more complex. ..

Example architectures for image classification tasks

image

[womwesz |

image

[o es/2 |

image

313 conv, 64
pool, /2

3G conv, 128

[

pool, /2

output
size: 7

fca096
fca096

4/20

1000

...and larger. ..

LARGE LANGUAGE MODEL HIGHLIGHTS (OCT/2024)

(o
GPT-4 Classic X | i X Olympus Next...
1.76T MoE 3 2T (2024H2) (2024)
e 3 R oM . P W e

o Nano @ XS @ Small @ Medium 180B QEI{-1) 300B XL
Gemini-Nano-11.8B Falcon 2 11B Command-R 358 Qwen2.5 70B Command R+ 104B Grok-2 314B

Mamba-2 2.7B Gemini Flash 88 Mixtral 8x7B Llama 3 70B Qwen-1.5 110B Inflection-2.5
Phi-3-mini 3.8B Mistral 7B Gemma 2 27B Luminous Supreme Titan 200B Llama 3.1 405B

& Parameters

. Allab/group.

Sizeslinear toscale.S 15 only. Al 450+ models: imodels:table/ Alan . Thompson. 2021-2024.

¢ LifeArchitect.ai/models & 450+ more models at LifeArchitect.ai/models-table

lifearchitect.ai, 2025 5/20

https://lifearchitect.ai/models/

.and more powerful

text-to-image (DALL-E 1/2)

ne that makes

rom human souls, artstation panda m mixing sparkling als, artstation

text-to-text, few-shot learning (GPT-4)

Benchmark e
Evaluated few-shot
86.4%

5-shot

95.3%

oning around everyday events 10-shot

2 Reasoning Ch: (AR

multiple choj

Commons:

WinoGrande
Commons ng around pronoun resolution 5-shot 5-shot

HumanEval 670%
Python co ks

DRORP (f1score
g omorenensir 6/20

https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2204.06125
https://openai.com/research/gpt-4

.and more expensive

Model Training Chip “tz:; Chip Wall Total Retail MMLU

end type count clock time (US$)

(days) (years)

GPT-3175B Apr/2020 V100 130 10,000 15 days 405y $9M 439
Llama165B Jan/2023 A100 312 2,048 21days 118y $4M 634
Llama 2 70B Jun/2023 A100 312 2,048 35days 196y $7M 68.0
Titan 200B Apr/2023 A100 312 13,760 48days 1,319y $45M 704
GPT-4 17T Aug/2022 A100 312 25,000 95days 6,507y $224M 86.4
Gemini Nov/2023 TPUv4 275 57,000 100 days 15,616y $440M 90.0
Llama 3 405B Apr/2024 H100 989 24,576 50days 3,366y $125M 85+
GPT-5 Apr/2024 H100 989 50,000 120 days 16,438y $612M
Grok 2 Jun/2024 H100 989 20,000 50days 6,571y $245M
Olympus Aug/2024 H100 989
Gemini 2 Nov/2024 TPUv6 1,847
Grok 3 Dec/2024 H100 989 100,000 50 days 32,855y $1.2B

Table. Model training compute (see working, with sources®).

lifearchitect.ai, 2025

As of May 2024, jtalic = estimate at that time

/20

https://lifearchitect.ai/models/

Key concept: Embeddings

e Embeddings are learned dense, continuous, low-dimensional
representations of objects
> Useful to represent complex objects and/or parts of objects
(categorical, text, time series, audio/image/video, graph, tables, ...)
» Think: complex to work with objects, simple to work with embeddings
e Example: Top-30 closest word vectors to “God", trained on the Bible

strength

i ghlemsness

nammendmsnt
wisdom . /
power
SBWS‘ ion

faith

o . U pplcmon
textminingonline.com 8/20

http://textminingonline.com/dive-into-nltk-part-x-play-with-word2vec-models-based-on-nltk-corpus

Recurrent neural networks (RNN)

e Recurrent neural networks (RNN) are a family of neural
networks for processing sequential data
> Time series data (e.g., sequences of sensor readings)

Natural language text (e.g., sequences of characters of words)

Audio signals (e.g., sequences of amplitudes)

Images (e.g., sequences of pixels or rows)

Videos (e.g., sequences of frames)

Actions (e.g., movement of pen)

vVVvyVvVYyYVYY

e Example: DeepAR for probabilistic forecasting
» Focus: scenarios with many related time series
(energy consumption of individual households, demand of products)

A i MM/M A s AM

il »M |

e Related: (deep) state space models (SSM)

Flunkert et al., 2017 9/20

https://arxiv.org/abs/1704.04110

Convolutional neural networks (CNN)

e Convolutional neural networks (CNN) are a family of neural
networks for processing grid data
» Grid data means: neighboring points related
> 1D grid — sequential data (e.g., time series, text, audio, ...)
> 2D grids (images), 3D grids (movies, CT scans)

e Example: artistic style transfer

Quartz 10/20

http://qz.com/495614/computers-can-now-paint-like-van-gogh-and-picasso/

Attention and Transformers

e Attention is a mechanism to summarize multiple inputs, often
focusing on a small, dynamic subset of the inputs

e Can be used in conjection with other architectures (e.g., RNNs
with attention) or standalone (e.g., Transformers)

agreement
European
Economic
Area

was
signed

in
August
1992
<end>

(3
<
=

L
accord

on
the

sur
la

zone
économique
européenne

g

A woman is throwing a frisbee in a park.

Translation Image captioning

Bahdanau and Cho, 2015; Xu et al., 2016 11/20

https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1502.03044.pdf

Graph neural networks

e Graph neural networks (GNNs) are a family of neural networks
for processing graph data
e Example: molecular property prediction

Molecule to Graph Neural Network Graph to Network for
graph layers vector operation prediction

for each node: ©->0->eee>0 p3{(e) citrus
ﬁ’ weet baked spicy
S odorless
-- clean alcoholic beefy
s fruity

Embedding space

138 odor descriptors

Graph
embeddings

B

Figure 2: Model Schematic. Each molecule is first featurized by its constituent atoms, bonds,
and connectivities. Each Graph Neural Network (GNN) layer, here represented as different colors,
transforms the features from the previous layer. The outputs from the final GNN layer is reduced to a
vector, which is then used for predicting odor descriptors via a fully-connected neural network. We
retrieve graph embeddings from the penultimate layer of the model. An example of the embedding
space representation for four odor descriptors is shown in the bottom right; the colors of the regions

in this plot correspond to the colors of odor descriptors in top right.
Sanchez-Lengeling et al., 2019 12 /20

https://arxiv.org/abs/1910.10685

Deep generative models

e Deep generative models use deep neural networks to define
generative models for complex data distributions (e.g., text,
audio, image, graphs, ...)

» Our focus: AR, perhaps: VAEs, GANs

e Example: T5, GPT-1/2/3/GPT-4, ChatGPT

OUTPUT | | am a student
[
N

r

-
1

INPUT | Je suis étudiant

Jay Alammar, The lllustrated Transformer 13/20

https://arxiv.org/abs/1910.10683
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://openai.com/research/gpt-4
https://openai.com/blog/chatgpt/
https://jalammar.github.io/illustrated-transformer

Deep learning frameworks

e In practice, neural networks are usually trained using deep
learning frameworks such as PyTorch, TensorFlow or JAX

vy

>

>

) YYVYVVVYVYY

Linear algebra / array processing

Common units, layers, models, loss functions
Preprocessing and data preparation methods
Common optimization methods

GPU support, parallelization

Support for model deployment

Facilities for debugging and visualization

enerally, to perform gradient-based parameter estimation

Programmers specify model (e.g., implement forward pass)
When used on training data, framework collects operations and
their outputs to build computation graph

Gradient computation performed automatically from this
computation graph using backpropagation

Optimizer uses gradient to update model

e No need to compute gradients manually, yet understanding of
backpropagation and optimization methods is important 14/20

https://pytorch.org/
https://www.tensorflow.org/
https://docs.jax.dev/en/latest/index.html

Example: PyTorch

define model with one hidden layer
model = torch.nn.Sequential(
torch.nn.Linear (dim_in, dim_hidden),
torch.nn.RelLU(),
torch.nn.Linear (dim_hidden, dim_out),

)

define loss function (mean squared error)
loss_fn = torch.nn.MSELoss ()

pick optimizer (Adam)
optimizer = torch.optim.Adam(model.parameters(), lr=1le-4)

run for 500 epochs

for t in range(500):
y_pred = model(X) # forward: model output (X = examples)
loss = loss_fn(y_pred, y) # forward: loss (y = labels)
model.zero_grad() # clear old gradients
loss.backward() # backward: compute gradients
optimizer.step() # update parameters

15/20

Training (1)

e First, the tool: gradient-based methods to minimize some cost
function (backpropagation, optimizers)

e Challenge 1: large, complex models

» Fully-connected layer with n inputs and m units: O(nm) parameters
> 10 dense layers, each 200 inputs/units — 400k parameters
» 1 dense layer, 1M inputs, 200 units — 200M parameters
> E.g., T5 text-to-text transformer for NLP
(small: 60M, base: 220M, large: 770M)
» E.g., EfficientNet for CV
(BO: 5.3M, B1: 7.8M, ..., B7: 66M)

e Challenge 2: limited training data

> Large labeled datasets generally not available
» Supervision signal alone may be insufficient to achieve reasonable
performance

16/20

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1905.11946

Training (2)

e Overfitting is a severe concern
» Universal approximation theorem: with sufficiently many hidden
neurons, FNN can perform arbitrarily well on the training set
» Sufficiently large models needed for complex tasks

e Then, the art: selected techniques and tricks for deep learning
» Training process and general techniques
> Architectures
> Both very important

e Generally, goals include

» Improve performance of gradient-based methods

Reduce overfitting, improve generalizability

Leverage additional data

Reduce (task-specific) costs such as model size, computational
costs, enery consumption, amount of required supervision, ...

vvyy

17/20

Goals of this lecture

1. Solid understanding of key concepts

» Architectures

» Design patterns
» Training methods
» Systems

2. Ability to explore the deep learning literature on your own

» SOTA changes at fast pace — enable you to stay up-to-date
> Prerequisite/helpful for related lectures

3. Hands-on experience with selected frameworks and models
» Use and adapt pre-built DL models
> Be able to design, implement, train, and evaluate custom models /
training techniques
After this course, you should be able to read, understand, apply,
criticize, modify, and create DL models & techniques all by yourself.

18/20

Key applications and related lectures

e Computer vision
> E.g., image classification, object detection, image segmentation,
image generation, image restoration, ...
> Cf. CS 646 Higher Level Computer Vision (HWS)
> Cf. CS 668 Generative Computer Vision Models (FSS)
e Natural language processing
> E.g., parsing, sentiment analysis, information retrieval, machine
translation, chat bots, ...
> Cf. IE 696 Advanced Methods in Text Analyticss (FSS)
> Cf. IE 686 Large Language Models and Agents (FSS)
e Structured data; e.g., sequences/graphs/relational data
> E.g., recommender systems, drug discovery and toxicology, CRM,
bioinformatics, mobile advertising, financial fraud detection,
relational learning, data integration, ...
> Cf. IE 670 Web Data Integration (HWS)
e Generally, Al: robotics, gaming, planning, ...
> Not in this course
> Cf. IE 695 Reinforcement Learning (HWS)

19/20

Syllabus

Introduces basic and advanced deep learning architectures, key
techniques and training methods, systems, and selected applications.

e Feedforward neural networks

e Backpropagation and parameter optimization

e Machine learning systems

e Training techniques for deep learning models

e Recurrent neural networks / state space models
e Convolutional neural networks

e Attention and Transformers

e Deep learning for graphs

e Deep generative modeling

20/20

|IE 678 Deep Learning

02 — Feedforward Neural Networks
Part 0: Overview

Prof. Dr. Rainer Gemulla
Universitdt Mannheim

Version: 2025-1

Outline

o s b=

Embeddings

Feedforward Neural Networks
Linear Layers

Non-Linear Layers
Multi-Layer Perceptrons

2/4

Lessons learned

e Artificial neural networks
» Useful for a variety of learning tasks, great results in some areas
» Complex models, need data + compute + experience

e Feedforward neural networks

» Discriminative models, directed flow from input to output

» Hidden layers enable high representational capacity

» Outputs of hidden layers can be seen as learned features
(embeddings)

» Train with backprop + tricks + tricks + tricks (see later lectures)

e Basic ML models can be represented as FNNs

> Linear/logistic/softmax regression (no hidden layer)
» SVD and k-Means clustering (one hidden layer)

e ...and are a building block of more complex DL models

» E.g., as prediction head
> E.g., as artificial neuron

3/4

Suggested reading

e Drori, Ch. 1,2.1-2.4
o Goodfellow et al., Ch. 6+7
e Murphy 1, Ch. 13.1413.2

4/4

https://www.cambridge.org/highereducation/books/the-science-of-deep-learning/23B3CE5B09590BD9E30474C850FA5358
http://www.deeplearningbook.org/
https://probml.github.io/pml-book/book1.html

|IE 678 Deep Learning

02 — Feedforward Neural Networks
Part 1: Embeddings

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-1

From linear models to FNNs (1)

e Consider: prediction task with inputs x € X’ and outputs y €)

» Goal: learn a function from X to)
Simple approach: use a (generalized) linear model

» Inputs must be real-valued feature vectors z € RP
> OQutputs are a real value (e.g., linear or logistic regression)

Visually:

Linear

D _,]
zeR model

— gy cR

Recall (ML, 04-1): § = ¢(w ' = + b), where

> w € RP is a weight vector (one weight per feature, learned)

> bcRis a bias term (learned)

> ¢ is a mean function (e.g., identity or logistic function)

assumption

Problem: low representational capacity due to linearity

2/11

Example: Logistic regression (from ML course)

Data (x € R?) Prediction (¢ € [0,1]))

3/11

From linear models to FNNs (2)

e Representational capacity can be addressed by feature
engineering or using kernel methods (ML, 08)
> Allows to use arbitrary inputs spaces z € X’ by mapping them to

real-valued vectors
> To do so, uses pre-specified feature extractor f : X — R¥

e Visually:
F
Feature feRr Linear .
T € X — . . - ! — g€ R
engineering model

e Problem: which feature extractor?

> Key to good performance

> Hard to get right (domain experts, extensive experimentation, ...)

P> To see this: can you write a suitable feature extractor for classifying

images? (if not, see here)

4/11

https://en.wikipedia.org/wiki/Scale-invariant_feature_transform

Example: L1VM (from ML course)
L1VM, RBF kernel, logistic regression

A=0.1, 02 =0.571

5/11

From linear models to FNNs (3)

e DL methods can be interpreted as an approach to learn features

» Input objects x € X are transformed into dense, continuous,
low-dimensional representations called embeddings z € R%

» 7 = embedding dimensionality

> Useful to represent complex objects (categorical data, textual data,
graph data, tabular data, images, ...)

» Think: complex to work with objects, simple to work with
embeddings

» Useful embedding space = goal of representation learning

e Visually:

Deep z €]RZ‘ Linear
learning model

T € X — — g€ R

e Key point: instead of engineering features manually, embeddings
are learned from data — Main topic of this course
> Embeddings also called: latent code, distributed representations
» Embedding space also called: latent space

6/11

Example: Document embeddings

804414 newswire stories, inputs = per-document rel. frequencies of
2000 most common word stems (x € R?%%), shown here is 2D
embedding (z € R?) of two different methods (left: linear, right:

autoencoder)
Fig. 4. (A) The fraction of A [+
retrieved documents in the 045} < AiGenEBUGrLTOD
same class as the query when o4
a query document from the .o European Community
test set is used to retrieve other & o3 Interbank markets monetary/economic
test set documents, averaged § 025 ° ¥ -7
over all 402,207 possible que- < oz Y
ries. (B) The codes produced 0;? Energy markets
L ;. Disasters and

by two-dimensional LSA. (€)

The codes produced by a 2000- 005

500-250-125-2 autoencoder. e oo PR
Number of retrieved documents

accidents

% Legallucioial

ol

Government
borrowings

indicators

Accounts/
eamings

Hinton and Salakhutdinov, 2006 7/11

https://www.science.org/doi/10.1126/science.1127647

Encoders and prediction heads

e Functions that transform objects 2 € X’ to embeddings z € R

are known as encoders

e Functions that transform embeddings z € RZ to predictions

y € R are known as prediction heads

» Can be linear or more complex

» Typically much simpler than encoder

> E.g., when prediction head is logistic regression, then positive and
negative instances are ideally linearly separable in embedding space
» Sometimes referred to as unembed operation

e Visually:

z € X — Encoder

z e R%

Prediction
head

— gy ecR

e Both encoder and prediction head are learned neural

(sub)networks

8/11

Contrastive learning

e Embeddings can be used in other ways as well

e E.g., to compare objects, potentially across multiple modalities
» Useful, for example, for zero- and few-shot prediction
> Learned via a “contrastive learning” approach (more later)

e Example: CLIP embeddings for images and text

(1) Contrastive pre-training (2) Create dataset classifier from label text

Pepper the
aussie pup

Text

Encoder

Iy LTy | T | 1Ty Ty

Text
Encoder ‘

(3) Use for zero-shot prediction

it LTy | LT | LTy Iy Ty ™| T | T | Ty
i ! 1Ty | 1Ty | 1T, I T,
|| BT BT | BT 3Ty
w Encoder E'rf\‘éi%z’ L LT 4Ty | Ty LTy
G e T

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

9/11

https://openai.com/research/clip

Structured prediction / deep generative models

e To handle more complex output spaces), we may replace the
prediction head by a component that “generates” output

e Functions that transform embeddings z € R? to (complex)

outputs y € Y are known as decoders

» Note: in such models, embedding dimensionality Z may or may not

depend on input z

e Visually:

e X — Encoder

z e RZ

Decoder

10/11

Example: unCLIP (DALL-E 2)

CLIP objective

“a corgi
playing a
flame o
throwing I’ o
trumpet” A B bssso
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, - O O
—0+0+0Or—
O O
prior decoder

Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process,
through which we learn a joint representation space for text and images. Below the dotted line, we depict our
text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior
to produce an image embedding, and then this embedding is used to condition a diffusion decoder which
produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.

11/11

https://cdn.openai.com/papers/dall-e-2.pdf

|IE 678 Deep Learning

02 — Feedforward Neural Networks
Part 2: Feedforward Neural Networks

Prof. Dr. Rainer Gemulla
Universitdt Mannheim

Version: 2025-2

Artificial neuron

e An artifical neuron (AN) is a function f: R" — R
» Inputs are vectors € R™
> Output is a value y € R

e f is taken from a family of functions that is parameterized by
> A weight vector w € R™ (one weight per input)
> AbiasbeR
» A transfer function or activation function ¢ : R -+ R

e Basic structure: y = ¢(w'x + b)

» Computes the weighted sum
s=w'x+ b of its inputs and bias
(called preactivation)

> Passes s through the transfer
function to obtain output y
(called activation)

» ¢ can be deterministic or stochastic

e As before: bias can be replaced by an
additional input g = 1 and

corresponding weight wg = b L

Types of artificial neurons

e The type of an AN is determined by its transfer function ¢

e An AN of a given type can represent the family of functions

F¢:{m—>¢(me+b)|w6R",beR}

Each function in this family can be represented by its bias and
weight vector

e We will see later that types are usually specified up-front,
whereas weights are learned

The simplest type of neuron is a constant neuron

» No inputs; output fixed value z € R

> Notation (from now on): @ or simply x

3/12

Example: Linear neuron / identity

e Uses ¢(s) = s

e Notation: @

T T T T
-4 -2 0 2 4
T

e Simple but computationally limited

e We often but not always want non-linear transfer functions

4/12

Example: Logistic neuron

e Use logistic function ¢(s) = o(s) o m

e Notation: @

y
00 02 04 06 08 10

e Gives a real-valued output that is smooth and bounded in [0, 1]
> Negative preactivations mapped to value < 0.5
» 0 preactivation mapped to 0.5
» Positive preactivations mapped to value > 0.5

e Non-linear

5/12

Example: Stochastic binary neuron

e Also use logistic function

e But output of the logistic function is treated as a probability of
producing a spike (1)

o le,. ¢(s) = {1 with probability o (s)

" 10 otherwise

P(Y=1)
00 02 04 06 08 10

e Defines a probability distribution over outputs

e Other neurons can also be made stochastic

6/12

What is an artificial neural network?

e A network of artificial neurons

> A set of (artificial) neurons
> Connections between neurons (directed or undirected)

e Many different architectures
» How many neurons? Of which type?
> Are there output neurons?
» Are there hidden neurons (neither input nor output)?
» Which neurons are connected?
> Are connections directed or undirected?
> Are there cycles?
e Picking the right architecture for the problem at hand is
important and requires skill/thought/compute power
— Architecture engineering
e Can represent a wide range of functions (universal approximation
theorem)

7/12

Feedforward neural networks

e A feedforward neural network (FNN) is an ANN in which
> All connections are directed, and
» There are no cycles (i.e., forms a DAG)

e Neurons usually grouped in layers
> Input neurons: no incoming edges (first layer)
Output neurons: no outgoing edges (last layer)
Hidden neurons: all others (layer = maximum distance from input)
Layers do not need to be fully connected
Traditionally: edges only between subsequent layers
(but: edges that skip layers are allowed, too)

vvyvyy

e Example: an FNN with one hidden layer (omitting bias inputs)

Input layer Hidden layer Output layer 8/12

MNIST, best performer (2011), architecture

Deep convolutional neural network (no preprocessing)

Ciresan et al., 2011 + slides

map M
input layer convolution
LO - image layer L1

‘map 0

map 1

map M?

convolution
layer L2

Doooooooooooooooo

oooooooo

fully connected
layer L3

fully connected
layer L4 - labels

9/12

http://people.idsia.ch/~juergen/ijcai2011.pdf
http://people.idsia.ch/~ciresan/data/SCRpresentation.pdf

Learning

e Once we settled on an architecture, we need to learn connection
strengths (weights)

e Simple approach
» Supervised learning with labeled training examples
> Use a suitable notion of model performance (e.g., loss function,
likelihood)
P Learn all weights jointly
— As before: ERM/RRM, MLE/MAP, Bayesian inference (ML, 02-3)
> Most common: empirical/regularized risk minimizaton

e We will see: simple approach is often “not enough”
» High model complexity
> Limited (labeled) training data

e Values of hidden units can be thought of as features, but which
features are good is unknown and needs to be learned
» This makes learning hard
> Note: “embeddings” typically refer to the values of a “certain”

hidden layer in a larger FNN (more later) o/

FNNs, more generally

e Choice of neuron type(s) important
> Influences expressability
> Influences “learnability”
> Many more types of artificial neurons have been proposed

e Neurons may not follow the template discussed here
» E.g., product neuron y = [[, ;
> E.g., max-pooling neuron y = max;(x;)
» In practice: (parameterized or fixed) operators instead of artificial
neurons (more later)

e Layers may be more general

> |.e., any parameterized function from R™ to R™
> May compute multiple “dependent” outputs jointly
(e.g., softmax layer)
> May have additional internal structure (e.g., Transformer layers)

e Will see: generally, FNNs represented as a “compute graph”

11/12

https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions

Preview: logistic regression (2D), N = 2

Forward pass
weights

(55 [

labels

)

. X n l J
inputs matmul o log loss| mean cost
1 -2 o 1.7 L] 0.85 017 L T0.09
-3 4 -39 0.02 0.02

12/12

|IE 678 Deep Learning

02 — Feedforward Neural Networks
Part 3: Linear Layers

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-2

Recall: Supervised learning with FNNs

e Supervised learning
» Learn a mapping from inputs & to outputs y
» Training set D = { (x;,y;) }fvzl of input-output pairs
> With FNNSs: for input x;, we want output g, “close” to y;
» Learning means adjusting the weights such that the FNN does this

e FNNs are discriminative
> Given an input x, they compute an output ¥
» But they don’t allow going from outputs to inputs

e Hidden layer outputs are inputs of the next layer
» We may also think of hidden layers as features for the next layer
» These features are not provided upfront, but learned

2/17

Linear layers

e Layers in which all layer inputs are connected with all layer
outputs are called dense layers or fully-connected layers

e A dense linear layer is a layer consisting of only linear neurons
» n layer inputs (& € R™), m layer outputs (y € R™)
» Parameterized by weight vectors wy, ..., w,, € R"
» Optionally: biases by,...,b,, € R

e Outputs given by
yj =) lwjlizi + bj = (wj, @) + b;

e Example: n =4, m =2, no bias

3/17

The action of a linear layer

e Without bias, we have: y; = (w;, x)

o Let W € R™™™ a weight matrix in which the j-th column
equals the weights w; of the j-th layer output

W:('w1 wy ... 'wm)

o Then: y=W'x

> Linear layers compute a matrix-vector product

e For our example, W = (w; w3) € R**? and

e () (3)-6) -

4/17

Using linear layers

e Typical uses of linear layers
> As an output layer for regression tasks
> As a hidden layer to perform dimensionality reduction (m < n)
(in ML somewhat confusingly called linear projection)
> Likewise, as a hidden layer to increase dimensionality (m > n)

e Number of parameters: nm (without bias), nm + m (with bias)

n m | # parameters

64 64 4,096
128 128 16,384
256 256 65,536
512 512 262,144
1,024 1,024 1,048,576
768 3,072 2,359,296
3,072 768 2,359,296

(T5-Base dense layer, dim up)

(T5-Base dense layer, dim down)

5/17

https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf

Linear regression as FNN (1)

e In a linear FNN, all neurons/layers are linear

Simplest linear FNN: single linear layer with one output

@\

Input layer Output layer

9

e Output § = (w,x) + b is linear in input « — linear model
Suppose we train this network using ERM with squared loss

> Empirical risk is & >, (y; — ;)% — minimize

> We obtain ordinary least squares (OLS) estimate for linear regression

Suppose we train with MLE assuming i.i.d. normal errors
> le., assuming y; = (w*,x;) + b* +¢;, where ¢; ~ N(0,0?)
> Likelihood [T, NV (y:|9:,0?) — maximize

P Recall: solution is OLS estimate

6/17

Linear regression as FNN (2)

e With multiple outputs, we obtain multiple linear regression

@‘* Q) in
O,
e Linear FNN (w/o hidden layer) = linear regression

P> To determine bias and weights, any suitable linear regression library
can be used

e Outputs remain linear even with hidden layers (— exercise)
— That's why we often want non-linearities

e For regression problems, linear layers often used as output layer

z e RZ

Y

r € X —| Encoder Linear layer — 3y € R

7/17

Autoencoders

e FNNs are useful for unsupervised learning as well
> We are given an unlabeled dataset D = {@; }_, with =; € R
> We don't have outputs
> We want to find structure, or patterns, or reduce dimensionality

e |dea: train FNN to predict its input, i.e., set y;, = x;
» The resulting FNN is called an autoencoder

|z € R?|

r e X — Encoder Decoder [— 1€ X

Feed into supervised learner

e Why autoencoders?
> Autoencoders are a technique to learn embeddings (z)
» E.g., semi-supervised learning: train autoencoder on all inputs
(labeled+unlabeled), use embeddings for supervised learner (labeled)
> E.g., clustering: use embeddings as inputs to, say, K-means
E.g., denoising: use & instead of x
> E.g., visualization: visualize z (e.g., using Z = 2)

v

8/17

Linear autoencoders

e Linear FNNs can do more than what may be expected at first
glance

e A linear autoencoder uses only linear layers (in both encoder
and decoder)

e A simple (but useless) linear autoencoder

Input layer () Hidden layer (z) Output layer (&)

> Can you figure out the optimal weight matrices (such that
IAZj = 1‘])?
9/17

Bottlenecks

e Consider a linear autoencoder with & € R? and one hidden layer
with Z < D hidden neurons

» Can you still figure out the optimal weight matrices?

e A layer with few neurons is referred to as a bottleneck
> |.e., fewer neurons than the surrounding layers
» Forces FNN to “compress’ information — dimensionality reduction
» FNNs with bottlenecks /earn how to compress

e Since autoencoder needs to reconstruct all inputs well, the
optimal “compression” depends on all training inputs
> E.g., above: 5D data (x) compressed into a 2D representation (z)

10/17

Obtaining optimal weights

eWehavez=W/ zand&d =W,z=W, Wz

e For squared error, solve argminyy y, |>; > ;(2ij — 3)?

e The solution can be read off the singular value decomposition
(SVD) of X (ML, 06-2)

>

VVVYYVYY

>

Let X be the design matrix and UZEZV} its size-Z truncated SVD
Uy is an N x Z matrix with the first Z left-singular vectors of X

V 7z is an D x Z matrix with the first Z right-singular vectors of X
3z is an Z x Z matrix with the first Z singular values of X

An optimal solution is W1 =V 5z and Wy = V;

For this solution, 2/ =]V, =[U];.2z

And @] = 2]V, = [U4];.: X2V} = the SVD reconstruction

e This is closely related to principal component analysis (PCA)

>
>
>

Main difference: first center the data so that each feature has mean 0
Then W contains the first Z principal components as its columns
And z; contains the PCA scores for x;

11/17

Example: Weather data

X

Jan

Apr

Jul

Oct

Year

Stockholm
Minsk
London
Budapest
Paris
Bucharests
Barcelona
Rome
Lisbon
Athens
Valencia
Malta

-0.70
-2.10
7.90
1.20
6.90
1.50
12.40
11.90
14.80
12.90
16.10
16.10

8.60
12.20
13.30
16.30
14.70
18.00
17.60
17.70
19.80
20.30
20.20
20.00

21.90
23.60
22.80
26.50
24.40
28.80
27.50
30.30
27.90
32.60
29.10
31.50

9.90
10.20
15.20
16.10
15.80
18.00
21.50
21.40
22.50
23.10
23.60
25.20

10.00
10.60
14.80
15.00
15.50
16.50
20.00
20.40
21.50
22.30
22.30
23.20

12/17

Example: Weights and representation
W, 1 2 Wy Jan Apr Jul Oct Year
Jan 022 -0.85 1 022 040 0.64 045 043
Apr 0.40 0.06 2 -085 0.06 047 -0.18 -0.14
Jul 064 047
Oct 0.45 -0.18
Z 1 2
Year 043 -0.14 Stockholm 26.02 8.25
Minsk 28.63 10.30
London 34.76 0.00
Budapest 37.36 7.42
Paris 36.69 1.48
Bucharests 41.07 7.79
Barcelona 4551 -3.22
Rome 47.36 -1.50
Lisbon 48.25 -5.34
Athens 51.66 -1.69
Valencia 50.30 -6.16
Malta 52.86 -5.45

13/17

Plot of representation

Bottlenecks of two neurons can be useful for visualization.

o_| Minsk
—
Stockholm Budape Bucharests
o
&
Paris
o London
Rome Athens
Barcelona
7 Lisbon Malta
Valencia
| T I ' ' ' I
25 30 35 40 45 50 %

21

14/17

General autoencoders

z e R% .
e X — Encoder > Decoder [— 2z € X

e Encoder is a function (e.g., an FNN) that compresses input x to
an embedding z (also called code or distributed representation)

e Decoder is a function (e.g., an FNN) that decompresses an
embedding z to obtain reconstruction &

» Think: approximate “inverse” of encoder

» Decoder may be a “reversed” architecture of the encoder (e.g.,
layers in reverse order but with different weights)

» Decoder may be an entirely different network

e Simplest way to train autoencoder is to use data points x as
both input and reconstruction target

15/17

Example: Representing documents

804414 newswire stories, inputs = per-document rel. frequencies of
2000 most common word stems, autoencoder = logistic hidden

units + linear output units

Fig. 4. (A) The fraction of A
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C) 01
The codes produced by a 2000~ o0
500-250-125-2 autoencoder. o=

Accuracy

3 5 31 63 127 255 6111028
Number of retrieved documents

Hinton and Salakhutdinov, 2006

European Community
monetary/economic

Interbank markets

Energy markets
- Disasters and
accidents

Leading economic*
indicators

Government
borrowings

Accounts'
eamings ¥

16/17

https://www.science.org/doi/10.1126/science.1127647

Discussion (autoencoders)

e Autoencoders are a form of representation learning

e Autoencoders are an example of unsupervised pre-training
» l.e., learn (parts of) the weights of a network without supervision

e Many variants exists; e.g.,
> Architecture of encoder/decoder
» Choice of cost function
» Construction of inputs and outputs for learning
> Constraints on embeddings

e Examples

» Denoising autoencoders perturb the input x with noise to obtain
Z, and then aim to reconstruct the original input « from &
— noise robustness

» Variational autoencoders force z to follow a specified simple
distribution (e.g., diagonal Gaussian)
— generative model

» Sparse autoencoders force z to be sparse
—» sparse representations

17/17

|IE 678 Deep Learning

02 — Feedforward Neural Networks
Part 4: Non-Linear Layers

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-1

Fully-connected layers (1)

e Recall: Layers in which all layer inputs are connected with all
layer outputs are called dense layers or fully-connected layers
> n layer inputs (x € R™), m layer outputs (y € R™)

» Parameterized by weight vectors wy, ..., w,, € R”
» Optionally: biases by,...,b, € R
> Transfer function ¢ : R — R

e Qutputs given by

y; = o({wj, z) + b;)

e Example: n =4, m =2, no bias

2/22

Fully-connected layers (2)

e We can also interpret a fully-connected layer as a (learned) linear
layer followed by a (fixed) non-linearity:

e The action of the layer (without bias) is
y=o(W'a),

where we take the convention that ¢ is applied element-wise on
vector inputs

3/22

Binary threshold neuron

e One of the (seemingly) simplest non-linear neurons is the binary
threshold neuron (also called McCulloch-Pitts neuron)

Uses the binary threshold function as transfer function: outputs
fixed “spike” if input s is non-negative, else “nothing”

1 ifs>0

0 otherwise

Notation: @ or with fixed bias , @ .

o le,. ¢(s)=1(s>0)=

L]
0
1 1 1

00 02 04 06 08 1

T T T T
4 2 0 2 4
s=w'x+b

One interpretation: each input is the truth value of some
proposition, output is truth value of another proposition

(— exercise)
McCulloch and Pitts, 1943 4/22

http://deeplearning.cs.cmu.edu/pdfs/McCulloch.and.Pitts.pdf

Perceptron
e Invented 1957 by Frank Rosenblatt at the Cornell Aeronautical
Laboratory

e Corresponds to an FNN without hidden layers and binary
threshold units for outputs (single-layer perceptron)

() @D

e Already discussed in ML course (ML 04-1, which see)
> Linear decision boundary = {x : (w,z) +b=0}

e Many hopes and much controversy about what it can do at the
time (see Olazaran (1996) for history)

5/22

https://journals.sagepub.com/doi/10.1177/030631296026003005

Recap: What can perceptrons learn?

e Perceptrons can classify perfectly if there exists an affine
hyperplane that separates the classes

» |.e., when the data is linearly separable
e Otherwise, the perceptron must make errors on some inputs

e This is quite limited; e.g., perceptrons cannot learn the XOR

function
AND OR XOR
b =
=2
® [] & hS
| =] %]
Mo separation
Output 0: @ L@ is posspible

e We will come back to this later

6/22

Image source

http://www.cs.ru.nl/~ths/rt2/col/h10/10neurENG.html

Complexity of perceptron learning

e Suppose we want to minimize the misclassification rate (0-1 loss)

e If the data is linearly separable — “easy”
» In P; e.g., solve the linear program

minimize 0
subject to (@x;,w) >0 for all x; in pos. class (y; = 1)
(z;,w) <0 forall x; in neg. class (y; = 0)

e If the data is not linearly separable — “difficult”
> Finding an optimal weight vector is NP-hard (when dimensionality
n is part of the input)
» Remains NP-hard even when weights restricted to { —1,1}
> NP-hard to approximate even when weights restricted to { —1,1}
> Fortunately, we are often able to nevertheless find sufficiently good
weights in practice

Amaldi and Kann, 1995 7/22

http://www.sciencedirect.com/science/article/pii/030439759400254G

Perceptrons with multiple output units

Consider a perceptron with m binary outputs for classification tasks.

1. Multi-label classification — works
» Each input is associated with
m binary class labels
» Goal is to predict each of them
> E.g.: height (small/tall),
hair color (light/dark), ...
2. Multi-class classification (first option) — problematic
> Each input is associated with one out of 2™ class labels
> We associate each label with one output vector of the perceptron
> Problem: Which label with which output vector? (choice matters)

3. Multi-class classification (second option) — problematic

» Each input is associated with one out of m class labels
> We associate each label with its indicator vector (one-hot encoding)
» Problem: What if the network outputs less/more than a single 17

8/22

An autoencoder with a binary threshold unit

e Consider the following autoencoder (with biases)
1
O
Qs
QD
s

Input layer Hidden layer Output layer

» Observe: z € {0,1} is a binary embedding (binary code)

e Assume that we want to minimize squared error over training
data

» What does this autoencoder then compute?

9/22

Interpreting the weights (1)

M®<@ n

e Suppose that we are given by and w;

e The binary threshold unit then acts as a linear “classifier”
> Input & mapped to either z = 0 (bottom left) or z =1 (top right)

= 10/22

Interpreting the weights (2)

M®<@ i

e Let's now look at by and wo
» Given z, output is & = w2z + by
» All points in “class” z = 0 are mapped to ¢y def b,
» All points in “class” z = 1 are mapped to ¢; def by + wo

e Given b and w1, what are the optimal choices of ¢y and ¢;7
» Denote by z; the class of input x;

Squared error is >, > (wij — §:Z-j) =3 @i — e, |’

Alternatively: 7, _ [lz; — ol + Diizm 1T — a?

For each class k, our goal is to minimize the squared Euclidean

distance between the x;'s of the class and its representative ¢y,

» Optimum solution is the mean of the examples of the class

vvyy

Cp = Z x;
Zl zl_k ’

i:z;=k

11/22

Interpreting the weights (3)

M®<@ n

e The overall optimum solution is

o o

e Can you see what the autoencoder does?
12/22

Interpreting the weights (4)

M®<@ Tl

e Optimum solution agrees with K-means for K = 2

e K-means objective is to minimize the sum of squared distances

argmmz S e — el

k=1xeC}
where g, is the mean of the points in cluster Cj,

e Given an optimal K-means clustering for K = 2
» Each data point is associated to cluster of closest representative
> We set ¢, = p, (and thus obtain bs and ws)
> We set by and w; such that the decision boundary is the set of
points with equal distance to g, and p, (see previous slide)
» The binary threshold unit then associates each point x; with its
correct cluster z;
13/22

An autoencoder with multiple binary threshold units

e What happens if we have multiple binary threshold units?

Input layer Hidden layer Output layer

e This autoencoder also “clusters” the data
> Associates each data point with a “binary code” (00, 01, 10, 11)
» Each codeword can be seen as a cluster (27 in total)

e For Z > 1 binary threshold units, the optimum solution does
does not correspond to K-means anymore (with K = 27)
> Why? — exercise

14 /22

Recall: Logistic neuron

o Use logistic function ¢(s) = o(s) & L

e Notation: @

y
00 02 04 06 08 10

e Gives a real-valued output that is smooth and bounded in [0, 1]
> Negative activations mapped to value < 0.5
» (activation mapped to 0.5
» Positive activation mapped to value > 0.5

e Non-linear

15/22

An FNN with a single logistic unit

e If the binary threshold unit of a perceptron is replaced by a
logistic unit, we obtain an FNN similar to a perceptron

®

e What's the difference?
> Fix some weight vector w (and ignore bias)
» Above neural network outputs § € [0, 1] with

) {< 05 (w,x)<0

>05 (w,z)>0

> If output of the logistic unit is rounded to the closest integer, one
obtains output of the corresponding perceptron
P> Logistic unit can be seen as a “smooth” version of a binary

threshold unit
16 /22

Smoothing

If we scale the weights by some constant ¢ > 0, we change the
degree of smoothing.

(=}
—

o

|| Il
=00 N = O

o600 o000

0.6

0.4

0.0
|

<CW,X>

17/22

Binary classification

e Suppose we use the network for a binary classification task
> Given a labeled set D = { (x;, y;) }fil of input-output pairs

e We can minimize the misclassification error (0-1 loss)

S Iy, — round ()

> Eqiivalent to perceptron
» Outputs related to distance from decision boundary, but no
probabilistic interpretation possible

e We can maximize the log-likelihood of the provided labels

mL=> [yilngi+(1—y)In(l—g)]
> Equivalent %o logistic regression
> Input (w,x) to logistic transfer function interpreted as estimate of
log odds of positive class
» Output ¢; interpreted as confidence for positive class

e Output layer of FNNs for binary classification tasks is

typically a logistic neuron
18/22

Multi-class classification (bad approach)

e Naive (bad) approach to multi-class classification

» For C classes, use C logistic neurons

> Associate each label with its indicator vector (one-hot encoding)

> We may interpret output ¢, as confidence in label ¢ and predict the
label with the largest confidence

e Problem: Interpretation of §. as confidence not valid
» Qutputs ¢, may not sum to one — ¢ is not a probability vector

e Solution: tie the output neurons appropriately
— softmax layer (cf. ML 04-2)

19/22

Recap: The softmax function

e The softmax function S(n)
> Takes a real vector n = (11,...,nc)" € R®
> And transforms it into an C-dimensional probability vector S(n)

S L= eXP(Uc)
e = 50 expine)

» Called this way because it exaggerates differences and acts
somewhat like the max function (approximates indicator function of
largest coefficient)

T=100 T=1 T=0.1 T=0.01

0.5 0.5 0.5

0 0 0
1 2 3 1 2 3 1 2 3 1 2 3

Figure 4.4 Softmax distribution S(n/T), where n = (3,0,1), at different temperatures 7. When the
temperature is high (left), the distribution is uniform, whereas when the temperature is low (right), the
distribution is “spiky”, with all its mass on the largest element. Figure generated by softmaxDemo2.

Murphy, 2012 20/22

Softmax layer

W§ A)idig ?vv
<
L)

Softmax layer

W'le + b)

e A softmax layer computes §y = S (T

> ¢ € Sc is a probability vector
> T € R, is a hyperparameter known as the temperature
— Controls smoothness of distribution (assume 7' = 1 for now)

e FNN with single softmax layer trained with MLE / ERM + log loss
> 4. is model confidence in label ¢
> Equivalent to multinomial logistic regression (softmax regression)

e Output layer of FNNs for multi-class classification tasks is

typically a softmax layer
21/22

Summary: Typical output layers

e Regression

reX —

Encoder

e Binary classification

T EX —

Encoder

e Multi-class classification (C' classes)

T e X —

Encoder

e Multi-label classification (C' labels)

reX —

Encoder

RZ
z€ Linear layer — g € R
c RZ .. .

z .| Logistic | je01]
neuron

z €]RZ‘ Softmax icS
layer Y =

z ¢ R? Logistic .

g |ayer >y E [07 ”C

N
N
N
N

|IE 678 Deep Learning

02 — Feedforward Neural Networks
Part 5: Multi-Layer Perceptrons

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-1

Multi-layer FNNs

e So far: mostly FNNs without hidden layers
» These networks are limited in what they can do
> Linear regression, logistic regression, ...
» We can improve performance by engineering better features

e In neural networks, hidden layers are generally necessary
» Recall: can interpret hidden layers as features for the next layer
> By including hidden layers, we aim to let the network “do” the
feature engineering
> If there is at least one hidden layer, the network is called a
multi-layer FNN
» If more than one (or more than some value L > 1), called deep

(O
(O
or

2/11

How powerful are multi-layer FNNs? (1)

e Example: multi-layer perceptron (MLP)
> Fully connected layers
» Number/sizes of hidden layers are hyperparameters
> Hidden layers all of same type and non-linear (e.g., logistic neuron)
» Output layer is linear (regression) or logistic/softmax (classification)
e How powerful are such networks?
e Consider a basic wide MLP with
» D inputs, 1 linear output
» One fully-connected hidden layer with Z sigmoidal neurons
e Universal approximation theorem: This wide MLP can
approximate any continuous function on [0, 1]” given sufficiently

(but finitely) many hidden neurons [Cybenko, 1989]

3/11

http://www.dartmouth.edu/~gvc/Cybenko_MCSS.pdf

How

powerful are multi-layer FNNs? (2)

Similar universality results exist for deep MLPs

» Any continuous function on [0, 1]” can be approximated arbitrarily
well given sufficiently (but finitely) many hidden layers, each with at
most D + 1 units in each hidden layer [Hanin and Selke, 2017]

Universal approximation means that “any” function can be
represented

> Either via sufficient width or sufficient depth

But that doesn't mean that we can learn that function

P> Training methods may fail to find good parameterization
» Overfitting may occur

» Number of required units can be exponential in the input

dimensionality
> ...

4/11

https://arxiv.org/abs/1710.11278

Wide or deep?

e Deep models tend to show better generalization performance. ..

» .. for suitable architectures (# MLP)

» Encode belief that function to be learned involves a composition of
several simpler functions

> Interpretation: hidden layer output = intermediate values in a
multi-step computation

e But modern deep models can also be wide. ..

> ... for suitable architectures (# MLP)
> E.g., T5-Base has maximum width of 3072 x number of tokens
> E.g., 1000 tokens — width =~ 3M neurons

e And other considerations also matter; e.g., compute cost,
memory, parallelizability, ... (more later)

e So, wide or deep? — Both! Depends!

5/11

https://arxiv.org/pdf/1910.10683.pdf

Example (deep): CNNs

Task: transcribe multi-digit numbers from photographs

97 1 T T 1 !
= o6 e—e 3, convolutional
§ +—+ 3, fully connected
-
& 95 I- V—¥ 11, convolutional [
>
§ 94 | -
=
g o3l —_— 4
7
& 92 |- B

91 1 Il Il Il 1

0.0 0.2 0.4 0.6 0.8 1.0

Number of parameters x108

Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Goodfellow ¢t al. (2011d) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network used to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million.

Goodfellow et al., 2016 6/11

http://www.deeplearningbook.org/

Example (wide): Inverted Bottlenecks

e Inverted bottleneck = a wider hidden layer; e.g.,

e MLP that enhances expressivity
» Think: a more powerful compute step (in the multi-step
computation interpretation)
» Without substantially increasing depth
> Without increasing width for subsequent parts of network
e E.g., T5-Base uses 768 — 3072 — 768 “feedforward blocks”
P> Large maximum width mainly due to these inverted bottleneck
blocks

7/11

https://arxiv.org/pdf/1910.10683.pdf

Rectified linear neuron (RelLU)

e Also called linear threshold neuron or rectifier
if s >0
o ¢(s) =max{0,s} = {8 hes

0 otherwise
e Notation: @

e Note: again, a non-linear transfer function

e Common non-linearity for intermediate layers in deep NNs

8/11

Rectifier networks

e Rectifier network = MLP with only rectifier units in hidden +
output layers

e Function computed by rectifier network is piecewise linear

» Approximates a function by decomposing it into linear regions
> Roughly: the more linear regions, the more flexible / expressive

z,=0 =z z, z; z, x5=1

1D example 2D example

Wikipedia 9/11

https://en.wikipedia.org/wiki/Piecewise_linear_function

Expressivity of rectifier networks

Montuafar et al. (2014) have shown:
e Consider rectifier networks of form

» D = input dimensionality (assumed constant)
> H = total number of hidden units

» [= total number of hidden layers, each of width Z > D

e Number of linear regions at most 2

> — No more than exponentially many linear regions possible

o Number of attainable linear regions at least Q((Z/D)(E=1P zD)

» Attainable = maximum over all possible parameterizations
> Polynomial in Z (width)

> Exponential in L (depth)

> — Exponentially many linear regions indeed possible

10/11

http://papers.neurips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf

Rectifier networks and classification

Consider binary classification.

e Take rectifier network and add logistic neuron on top for output
e Each linear region then mapped to two classes separated by a
hyperplane (or to one class only)

So: part of input space for which model predicts each class is
given by (at most) as many linear regions as rectifier network
Similar arguments for multi-class classification

Train Test

-20 -15 -10 -05 00 05 10 15 20

Architecture: Input (2) — RelLu (100) — Softmax (3)

Source: Notebook of Goku Mohandas 11/11

https://madewithml.com/courses/foundations/neural-networks/

Deep Learning

03 — Gradient-Based Training
Part 0: Overview

Prof. Dr. Rainer Gemulla
Universitdt Mannheim

Version: 2025-1

Supervised training of FNNs

e In principle: like any other ML model
e Often: empirical risk minimization (our focus)
> Frequentist approach, obtains point estimate 8 of FNN parameters 6
> Use non-negative, real-valued loss function L(y,y) between a
prediction g and a true answer y
> Minimize empirical risk = average loss on training data { (z;, ;) }

1 N N
Femp(6) =~ S L(@isy,) where i = f(::6)

e Some common loss functions
> Squared error (for regression)
Log loss / binary cross entropy (for binary / multi-label classification)
Cross entropy / KL divergence (for multi-class classification)
Hinge loss (for margin-based classification)
0-1 loss / misclassification rate (for classification)
e Generally: use cost function J(6)
> E.g., regularized risk to prevent overfitting

vvyy

v

2/7

Gradient-based methods

e Gradient-based methods are dominant

» Large datasets, many parameters
» Many tricks used to make these methods work empirically

e General approach
1. Construct a batch (e.g., a subset of examples)
2. Compute gradients of cost function on batch
3. Update parameters using an optimizer
4. Repeat

3/7

Training Techniques

e Gradient-based methods are a tool to minimize some cost
function (backpropagation, optimizers)

e Training FNNs successfully is also an art; generally, goals include
» Improve performance of gradient-based methods
P> Reduce overfitting, improve generalizability
» Leverage additional data
» Reduce (task-specific) costs such as model size, computational
costs, enery consumption, amount of required supervision, ...

e In this part of the lecture, we look at

» Compute graphs, automatic differentiation

» Gradient computation via backpropagation (“backprop”): chain
rule + reuse of computations

» Optimizers beyond plain SGD

> Challenges in gradient-based training (vanishing/exploding
gradients)

» Mitigating architectural design patterns and their impact

4/7

Outline (Gradient-Based Training)

0= o

Overview
Backpropagation
Optimizers
Architecture design

Initialization

5/7

Summary

e Gradient-based methods dominant for training deep learning
models

e Backpropagation
» Technique to compute gradient of a computation w.r.t. its inputs
» Computation modeled via a compute graph
» Chain rule + reuse of computations
> Forward/backward pass to compute all outputs/gradients

e Optimizers
» Batch size and learning rate are key hyperparameters
» Momentum and adaptive learning rates common

e Architecture design
> Vanishing/exploding gradients can be problematic
> Architectural choices matter (e.g., non-saturating units, residual
units, skip connections)
P Suitable initialization depends on architecture

6/7

Suggested reading

e Drori, Ch. 2,3
e Goodfellow et al., Ch. 6, 8
e Murphy 1, Ch. 13.3, 13.4

7/7

https://www.cambridge.org/highereducation/books/the-science-of-deep-learning/23B3CE5B09590BD9E30474C850FA5358
http://www.deeplearningbook.org/
https://probml.github.io/pml-book/book1.html

Deep Learning

03 — Gradient-Based Training
Part 1: Backpropagation

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-3

Backpropagation

e Backpropagation is an algorithm to compute gradients
P Origins in the 60s in control theory
» Rediscovered many times
> Used for neural networks since the 80s

e Given a compute graph, performs

1. Forward pass to compute (all) output(s) (forward propagation)

2. Backward pass to compute (all) gradient(s) (backward propagation)
e For us: compute graph typically represents

» Output § of an FNN (given x, 0)
» Loss L of an FNN (given (x,y), 0)
» Cost function J for an FNN (given { (z;,y:) }, 0)

e And we are interested in gradients (as we will see)

> W.r.t. weights (VgJ): e.g., for gradient-based training

> W.r.t. intermediate outputs (V,L): e.g., for model debugging

> W.r.t. inputs (VL or Vg4): e.g., for sensitivity analysis or
adversarial training

2/23

Recap: Gradient (ML, 05-2)

e For functions with multiple inputs, there are multiple partial
derivatives; e.g.,

f = l‘% + 51‘1:)32
0
—f =2x1 + bxo
83:1

0

871'2 == 5(171

e We can gather them all in a single vector, the gradient of f

vafd:ef<a%f 2. %ﬁ
e For the example above, we obtain
Vorf = (2¢1 + 522 511) Vel = (25515;5@)
Numerator layout (row) Denominator layout (column)

3/23

Compute graphs

Backpropagation generally operates on a compute graph
Directed, acyclic graph that models a computation (as a data

flow program)
Vertices correspond to operations

Edges correspond to data passed between operations

(typically tensor-valued)

Multiple sources (no incoming edge): inputs, weights, ...

One sink (no outgoing edge): result

Feedforward/n%ural network

W1 W2

Corresponding compute graph
weightl weight2

wi wy

. T Z1 Z2
Input matmul matmul result

4/23

Forward propagation (example)

e Compute graph for example output g

weightl weight2

-1 1 T 0 4 T
G)| (o)

. x z1 zZ9
input norm

1) matmul (_3) matmul (4
-2 1

e Forward propagation: inputs — result
e Edges transport values

e For example:
1. Provide inputs z, W, W,
2. Evaluate first matmul: z; = W, x
3. Evaluate second matmul: zo = W2Tz1
4. Evaluate norm: § = ||z2||

result

5/23

Forward propagation

e Operators are evaluated in topological order (“forwards”)
» Whenever an operator is evaluated, all its inputs must be available
» Computation is local: only input values are required (the remainder
of the compute graph does not matter)
e Inputs and/or outputs are generally tensor-valued
> E.g., matmul(A, B) = AB takes two 2D tensors and produces a
2D tensor
> Note: our visual representation of compute graph does not indicate
which input is A and which is B, but the actual compute graph
does (and must do so)

e Intermediate results may need to be kept
» To evaluate subsequent operators
» To enable gradient computation with backpropagation

e Parallel processing is possible
> Individual operators can be evaluated in parallel (e.g., matmul)
> Different operators can be evaluated in parallel (when their
respective inputs are available)
> E.g., transformer encoders can operate on all inputs in parallel
> E.g., RNN encoders must process inputs sequentially .

Backward propagation (example)

e Backward graph for example output §

weightl weight2
—-0.6 1.2 5o+ —24 0.8 -
32 —64)| ™ 1.8 —06)| ™
. Oz 621 622 [5?3
Input matmul matmul norm result
2.6 [tk —0.6 ik 0.8 [1
—-3.8 1.2 —0.6

e Backward propagation: result — gradients
e Edges transport gradients

» Consider edge e and define
- def .
5. = gradient of result w.r.t. values on edge ¢

evaluated at the provided inputs
e For example:

1. Compute all values of forward pass (not shown above)
(5@ déf VQI’GSUPC = V@’g =1

0, (discussed later)

dwy and 0, (discussed later)

dw and & (discussed later)

o Dn

7/23

Backward propagation

lef .
e 0. = gradient of result w.r.t. values on edge ¢

e Key insight of backpropagation
> Gradients J. can be computed incrementally (akin to forward pass,
but in reverse order)
e Operators are evaluated in reverse topological order (“backwards”)
> \When operator evaluated, its output gradient(s) must be available
» Computation is local: only input values and output gradient(s) are
required (the remainder of the compute graph does not matter)
» Recall: intermediate outputs of forward pass required
— memory consumption (or recompute)
e Gradients are generally tensor-valued
» Convention: ¢, same shape as values on edge ¢ in forward pass
e Intermediate results may need to be kept
» To evaluate gradient for prior operators
> To debug/analyze models
e Parallel processing is possible (as before)

8/23

Gradient (single univariate function)

input u J?

> result

Result: y = f(u)

Gradient 4, dof Vyresult = Vyy =1

Gradient 6, def Vresult = %f(u) = f'(u)
Example

> « =0, f = o (logistic function)

> y=o(u) =0o(0)

> 5, = o' (u) = o(u)(1 - o(u)) = 7(0)(1 - o(0)

. u Yy . Ou . Oy
input o input o
p 0 L 05 result p 025 L7 1 result
Forward pass Backward pass

9/23

Gradient (composition of two univariate functions)

e Let's add another operator g in front

. v U Y
input 4> result

e Result: y = f(u) = f(g9(v))
» Function composition

o Gradient: 5, & Vay =2 f(u) = f'(u) = f'(uv)
> Same computation as before (but u now output of g)
> Need to retain u in forward pass to compute f'(u)

e Gradient

def

50 Yoy = £ 1(0(0) = 4 () (90) = g () ()

Vv
chain rule

=g'(v)du
Observe: that’s a local computation at ¢
Need: §, — passed backwards from subsequent operators
Need: v — computed in forward pass
Need: ¢’ — determined by g

vVvyVvyy

10/23

Example

ev=1g=logy, f=0
Forward pass

input 11) lo u o

y
20 L2 05

Backward pass

0y [Ou] 61/
1

i t lo o
T i e

J (5yd§fvyy:1

def

o 0y = Vyy=0'(u)dy =0o(u)(l —o(u))d, =0.25-1=0.25

° 0, def

result

result

Voy = logh(v)6, = vlolw% ~1.44-0.25 = 0.36

11/23

Gradient (composition of univariate functions)

e This generalizes; e.g., consider n operators

. 20=T [, Z1 . z2 Zn—1 Zn =Y
Ry N 1) ==L

e We have

e At each operator f;, the required gradient can be computed as

follows:
output derivative local derivative
=~
5. g y = oy oy 0z;
Fi-t Fimt 0z;_1 0z; 0z;_1
chain rule
/
= fi(zi1) - 0z
—_—— ~—

local derivative output derivative

12/23

Overall gradient

e Let's derive an expression for the gradients individually

0., =1
Oz s = fr(2n-1)0, = fn(zn-1)
Oy = fro1(2n—2)02, , = fr—1(zn—2) fr(2n-1)
Oz 5 = fr2(n-3)0z, 5 = frnoo(zn-3)fn_1(2n—2)fp(2n-1)

e Gradient is product of local gradients along the path from
the result to the resp. edge

e Backpropagation avoids repeated computations by
1. Proceeding backwards
2. Using the chain rule to reuse intermediate results (i.e., the §-values)

13/23

Gradient (multiple inputs)

e Operators often have multiple inputs; e.g., a simple linear unit
weight

i w

. T } _ Y
Input linear unit result
b

bias
e In the forward pass, the operator computes
y= f(z,w,b) =wzxr+b
e In the backward pass, we compute gradients of result w.r.t. each
edge as before (using the chain rule)
5, =1
0p =Voy=Vof(w,z,b) -6y =w-1
dw =Vuy =V f(w,zb) - dy=x-1
O =Voy =V f(w,z,b)-6,=1-1

e — Consider each input separately
14/23

Gradient (multiple outputs)

e Operators may have multiple outputs; e.g., consider
> E.g., operator f(x) may output n values, say, z1 = f1(z), ...

» Each of these outputs contributes to result y
» During backpropagation, we obtain 6., ..., ¢,
> We are interested in

output gradient local gradient

Oy i dy 0z,

0r = Vay =5, = e Dz

k=1

multivariate chain rule

n local gradient output gradient
/
=Y S 0z,

1

» — Consider each output separately and sum up

15/23

Gradient (multiple uses)

e Sometimes an operator’s output is “used” multiple times

> E.g., the (single) output of an operator g(z) is used n times
» That's equivalent to a single operator f with n identical outputs

(i.e., z = f(z) = L,g9(z) and thus z; = fr(z) = g(x)), each being
used once

P Using the results from the previous slide with f defined in this way:

= g’(:c) Z 0z
k=

1

» — Sum up all incoming J-values and proceed as before

16/23

Example: logistic regression (2D), N = 2

Forward pass

labell

inputl[1]

mn 01 Y1
1.7 LI 085

inputl[2]

weightl weight2

input2[1]

g -
L_ T 002

input2[2]

17/23

Example: logistic regression (2D), N = 2

Backward pass

inputl[1]

inputl[2]

0w, = —0.11 weightl weight2 0y, = 0.19 cost

—0.03\0u? 0.04/0u3
input2[1] s

5, 85,
12 o Y2
001 LI o051

input2[2]

18/23

Gradient computation in general

e Consider an operator f : R’ — R?
e Forward pass: v°'t = f(v'") with v™" € R! and v°t € R?

’Uin ,vout
| f
e Backward pass: " = J;(v™") T8 with §°* € R and 6™ € R/
in out
.9 Il 0
where we use the Jacobian J¢ of shape O x I given by
9 ol
V,vil'vfm B UfUt e Gon vi’“t
def
" out 0_,out o, out
vvi—rl: UO 8’Ui1" 'UO . 8’1}}" ’UO

o Intuitively, f/(v™)§°Ut (for scalars) now becomes J ¢(v") T §ou
» Can be derived by “rewriting” the discussions on multiple
inputs/outputs from the previous slides into matrix form
e More in exercises and tutorials 19/23

Gradient computation in general (example)
. (" _ (fi(z,22)\ _ (In(z1) +x§>
Let z = <x2> and f(x) = <f2(ac1,x2)) = (o1

0 0
e Jacobian is Jy = (‘9“1 h ax2f1> - (1/'%1 2332)

5 5
e f2 g2 To 1

i 1 4 i 1 4
n _— out in
o Letv <2> Then v°Ut = <2> and J¢(v'") = (2 1)

10
out __
o Let 0°" = <100>. Then

o mTeont (1 2\ (10 _ (1-10+2-100
0% = Jy(v7) 0 _<4 1) \100) = \4-10+1-100

_ %fl(l,Q) - o0ut 4 %fz(l,Q} - ogut _ (210
g f1(1,2) - 69 + 52 f5(1,2) - 631t 140

20/23

Example: logistic regression (2D), N = 2

Forward pass

weights labels

; n Y l — J

inputs o log loss mean cost
1.7 L 0.85 = 0.17 " T0.09
-39 0.02 0.02

Backward pass
weights labels

inputs cost

21/23

Backprop for selected operators (1)

Forward: element-wise op

v

z = ¢(v)

Forward: multiply (element-wise)

Y
P

¢

©

z =11 Ov2

Forward: matmul

~Ae

R’I’YLXTL

z = Av

—————

¢I('U) © 0z

Backward: element-wise derivative

0z

¢

Backward: rescale w/ other

‘\\\\423:f>5z

,/vleéz

0z

O

Backward: matmul w/ other

T

v\\\iﬁi?
matmul

0z

fe————

AT

z

22/23

Backprop for selected operators (2)

Forward: add Backward: copy
\\\42}\\\‘ ‘\\\éf\\\\

N z =1+ V2 n 0s

Forward: copy Backward: add

0z,

6Z1 + 622

02,
Forward: concatenate Backward: split
Ul 2z =wv||vy
V2

23/23

Deep Learning

03 — Gradient-Based Training
Part 2: Optimizers

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-1

Recap: gradient descent
e In ML lecture (05-2), we discussed vanilla gradient descent
Ori1 < 01 — €19y,

where g, is the gradient (or estimate) of the objective function
w.r.t. parameters 6 at time t (e.g., g, = Vg J(6:))

e And its variants for supervised learning
P> Batch gradient descent: compute exact gradient using all training
examples (high cost, easy to parallizable, exact gradient)
» Stochastic gradient descent: estimate gradient using one random
training example (low cost, hard to parallelize, noisy gradient)
> Mini-batch gradient descent: estimate gradient using some training
examples (in between; no. examples called batch size)

e Discussion
» Simple to implement and parallelize
» Suitable for large datasets and models
> Can be slow to converge (many epochs)
» Happily gets stuck in local minima

2/14

Challenges

e During training, we aim to minimize a potentially highly
non-convex cost function J(0) — difficult

e To make gradient-based methods work, need

1. Well-chosen training hyperparameters (this part)
2. Suitable network architecture design (next parts)

e Key training hyperparameter choices include

» Learning rate
» Batch size
» Optimizer

3/14

Effect of batch size

e Consider a cost function over training examples D of form

Li(
= o L
i€D
where L;(80) is the loss on example i (then: J is empirical risk)
e Suppose we construct each batch B by sampling a fixed number
of examples (uniform iid) and average losses

\B\ ZL (a random variable)

z€B
E[Js(0)] = J(8) (since E[L.] = J)
E[V@JB(O)] = VgJ(O) (since E[VQLZ] = V@J)

1
—var[VgL,(0)] (covariance matrix, # 0)

var [VgJg(0)] = B

e For this cost & approach: gradient correct in expectation,

variance decreases with increasing batch size (more in exercises)
4/14

Learning rate and batch size (1)

e Example: Projected SGD trajectories for VGG-9 (Li et al. (2018))
» Red dot — learning rate reduced

2nd PCA component: 6.33 %
LooL oL

2nd PCA component: 15.04 %

*Lst PCA component: 24.57 % ” 15t PCA component: 87.78 %
Batch size 128 Batch size 8192

Batch size small — high variance gradients
> Trajectory takes “detours”, regularizing effect

Batch size large — low variance gradients
P> Trajectory attracted by “sharp” local minima, empirically often lower
generalization performance (see Keskar et al. (2017))

Learning rate low — small steps (slow trajectory)
» High variance gradient estimates “average out”

Learning rate high — large steps (fast trajectory) 5/14

https://arxiv.org/abs/1712.09913
https://arxiv.org/pdf/1609.04836.pdf

Learning rate and batch size (2)

e At time t, we
> Compute approximate gradient g, (e.g., g, = VoJ5,(0:))
> Perform update 0,11 = 6; — €g,

e Fix t and 8, (but not B;) and define

> Step length L = ||€E[g,]|| (using expected gradient)
» Gradient variance V = var [g,]
> Both affected by learning rate, batch size, and cost function

e Examples (assuming uniformly iid losses as before)

Jg=mean loss | Jp=sum loss
Compute L \% L \%
2x learning rate stays 2% stays 2% stays
2X batch size 2% stays %x 2% 2%
1 : 1 1
2x |. rate, 5 batch size 5% 2X 2% stays 5%
2 |. rate, 2 batch size 2x 1 2 stays 2X

2
o Note: expected step length Ef||eg,||] > L (Jensen's inquality)

6/14

Learning rate and batch size (3)

e Which learning rate and batch size? — hyperparameter tuning

e Often a learning rate scheduler is used; e.g.,

> Large learning rate initially (quickly approach vicinity of optimum)

> Smaller learning rate later (slowly approach optimum)

e Smith et al. (2018): can also use a batch size scheduler; e.g.,
» Small batch size initially (quickly approach vicinity of optimum)

> Larger batch size later (slowly approach optimum)
P> Advantage: large batch sizes easier to parallize — faster

08

—— Decaying learning rate 1
—— Decaying learning rate 2
—— Increasing batch size 1
—— Increasing batch size 2

Validation set accuracy

© @ @
Number of epochs

(a)

08

—— Decaying learning rate 1
—— Decaying learning rate 2
—— Increasing batch size 1
—— Increasing batch size 2

Validation set accuracy

2000 00 9000 2000
Number of parameter updates

(b)

Figure 6: Inception-ResNet-V2 on ImageNet. Increasing the batch size during training achieves
similar results to decaying the learning rate, but it reduces the number of parameter updates from
just over 14000 to below 6000. We run each experiment twice to illustrate the variance.

7/14

https://arxiv.org/pdf/1711.00489.pdf

Improving upon gradient descent

e Problem: gradient descent can get stuck in “narrow valleys”
(ill-conditioned Hessian)

Gradient descent Ideal

e Problem: for SGD, gradient estimates g, may have high variance
(e.g., point in “wrong” directions)

e Can we do better?
> Gradient-based optimizers use g, to compute an update term wu;
and set 0,1 = 0; + u;
» Plain GD uses: u; = —eg,

. - .
Vortens. 2010 General goal: improve convergence properties 814

https://icml.cc/Conferences/2010/papers/458.pdf

Momentum (1)

e Idea: build up velocity in directions that have consistent gradient
SGD without momentum SGD with momentum

e Mitigates two problems: poor conditioning of the Hessian matrix
(narrow valleys) and variance in the stochastic gradient

e Method of momentum (heavy-ball method; Polyak, 1964) uses
exponentially-decaying moving average of negative gradient

Vi < YVt—1 — €9y
0111+ 0, + vy

» Think of v as velocity

> Hyperparameter v € [0, 1) referred to as momentum

> Speed (norm of update) increased up to ﬁx w.r.t. GD step
» ¢/(1 —~) called effective learning rate

Du, 2019 9/14

https://www.sciencedirect.com/science/article/abs/pii/0041555364901375
https://iopscience.iop.org/article/10.1088/1742-6596/1229/1/012046

Momentum (2)

e Variant: Nesterov momentum

» Apply momentum update before computing gradient

vt Y1 — €V (01+7v; 1)
0111 04+ vy

e Nesterov (1983) showed: for convex functions (unique global
optimum, Lipschitz) and batch gradients, convergence rate
improves from O(1/t) to O(1/t?)

» Does not apply to SGD, however
» Cost functions in DL are generally not convex
» But: bounds often loose, in practice much better performance

e Requires additional memory to store velocity v

P> Velocity v is of same size as model parameters 6
» Can be substantial for large models

10/14

http://proceedings.mlr.press/v28/sutskever13.html
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=46009&option_lang=eng

Adaptive learning rates

e So far: fixed learning rate for all parameters

e Adaptive learning rate: use per-parameter learning rate
> Smaller learning rate for sensitive parameters (large derivative)
> Larger learning rate for insensitive parameters (small derivative)

e Example: Adagrad (Duchi, 2011)

T Ti1+ 9,09 (sum of sq. gradient)
i1+ 0, — 5+€\/F ©g; (rescale learning rate)
t

» Learning rate reduced over time, more so for parameters with larger
derivatives

> Good theoretical properties for convex functions

» For deep learning, deduction can be too quick initially

e Adadelta and RMSProp (Hinton 2012) are variants that use
exponentially-decaying moving average of sq. derivatives

e Requires additional memory to store r
(same size as model parameters 0) 11/14

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://arxiv.org/abs/1212.5701

Example (click to animate)

\ — SGD -

N — Momentum [
~— NAG g
— Adagrad |
Adadelta

https://cs231n.github.io/assets/nn3/opt2.gif

Discussion

e Optimizers that use adaptive learning rates are popular

e Momentum and adaptive learning rates can also be combined

» E.g., Adagrad or RMSProp with momentum, Adam, NAdam,
AMSGrad, AdamX, AdamW, RAdam
> Yet higher memory consumption (velocity and per-parameter LR)

e No best optimizer — hyperparameter

e In PyTorch, many optimizers provided
> E.g., SGD and Adagrad (w/ and w/o momentum), Adam, ...
P See https://pytorch.org/docs/stable/optim.html
» Generally, called after backward pass

e More in lecture Optimization in Machine Learning by Simon
Weissmann (lecture notes, slides)

13/14

https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://arxiv.org/abs/1904.09237
https://arxiv.org/abs/1904.03590
https://arxiv.org/abs/1711.05101
https://arxiv.org/pdf/1908.03265.pdf
https://pytorch.org/docs/stable/optim.html
https://www.wim.uni-mannheim.de/doering/teaching/past-semesters/hws24/optimization-in-machine-learning/
https://www.wim.uni-mannheim.de/media/Lehrstuehle/wim/doering/OptiML/Sheets/lecture_notes.pdf
https://www.wim.uni-mannheim.de/media/Lehrstuehle/wim/doering/OptiML/Sheets/main.pdf

Example: PyTorch

define model with one hidden layer
model = torch.nn.Sequential(
torch.nn.Linear (dim_in, dim_hidden),
torch.nn.RelLU(),
torch.nn.Linear (dim_hidden, dim_out),

)

define loss function (mean squared error)
loss_fn = torch.nn.MSELoss ()

pick optimizer (Adam)
optimizer = torch.optim.Adam(model.parameters(), lr=1le-4)

run for 500 epochs

for t in range(500):
y_pred = model(X) # forward: model output (X = examples)
loss = loss_fn(y_pred, y) # forward: loss (y = labels)
model.zero_grad() # clear old gradients
loss.backward() # backward: compute gradients
optimizer.step() # update parameters

14/14

Deep Learning

03 — Gradient-Based Training
Part 3: Architecture Design

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-2

Cost functions of deep models

Consider cost function J(6@) for some deep model:
¢ Non-convexity
» Can have a large number of local minima
» Problematic if local minima have much higher cost than optimum
» Can show: in many classes of random functions, this is unlikely
when dimensionality is high

e Non-identifiability
> Many different equivalent parameter choices
(= one reason for the large number of local minima)
> E.g., in any MLP layer, can swap two units and corresponding
weights (weight space symmetry)
> E.g., in RelLU unit, can scale input weights by ¢ and “output
weights” by 1/¢
e Many saddle points
» Can show: in many classes of random functions, number of saddle
points compared to local minima grows exponentially with
dimensionality

> May slow down learning
2/24

https://arxiv.org/abs/1406.2572
https://arxiv.org/abs/1406.2572

Come on, how bad can it be?

Visualization of cost landscape of by Li et al. (2018)
e Minimizer found during training in center

e Cost visualized along two random directions (in parameter space)

e More at losslandscape.com

VGG-56

VGG-110

(naming scheme: architecture — depth)

3/24

https://arxiv.org/abs/1712.09913
https://losslandscape.com/
https://arxiv.org/pdf/1409.1556v6.pdf

Vanishing gradient problem

e Consider an activation function ¢ and recall:
Forward Backward

v =) SWb b

e Vanishing gradient problem
> If ¢/(v) < 1, the gradient becomes smaller
> If this happens in consecutive layers, the gradient vanishes
exponentially fast with depth (since local gradients multiply)
> If ¢'(v) = 0, gradient barely passes through (saturated unit)
> If ¢'(v) = 0, gradient is gone right away (dead unit)

e Problematic since prior layers receive no useful gradient signal
> E.g., consider a weight vector w used in a prior layer
— VwJ =~ 0 — gradient-based learning fails (weight not updated)
» E.g., consider input x and corresponding output ¢ of a network
— Va9 =~ 0 — output insensitive to input changes

e Problem also arises with other layers
(e.g., linear layers — exercise)

4/24

Example: Logistic activation function

e Forward: o(v) = (1 + exp(—v))~! € [0,1]

o\v)
00 05 1.0

e Backward: o'(v) = o(v)(1 — o(v)) € [0,0.25]

a'\v)
io 1.0

0.0 0

T T T T T T T
3 2 1 0 1 2 3
v

The logistic unit is not well suited as a hidden layer unit since:
e 0(0) =0.5 — zeros not “passed through”

e o'(v) <0.25 — gradients always reduce by at least 1/4

e Saturated when |v| > 5

5/24

Better: tanh activation function

e Forward: tanh(v) = (exp(2v) —1)/(exp(2v) + 1) € [-1,1]

——

tann(v)

Backward: tanh’(v) = 1 — tanh(v)? € [0, 1]

tann'(v)
0.0 0i5 1.0

T T T T T T T
3 2 1 0 1 2 3
v

tanh(0) = 0 — zeros “passed through”
tanh’(0) = 1 — gradients around zero “passed through
Saturated when |v| > 3 o)

Example: RelU activation function

e Forward: relu(v) = max(0,v) € [0, 00)

1
1

relu(v)

0

—4 -2 0 2 4
e Backward: relu’(v) =I(v > 0) € {0,1} for v # 0

relu(0) = 0 — zeros “passed through”

relu’(v > 0) = 1 — gradients “passed through”

relu’(v < 0) = 0 — gradients gone right away (dead)

7/24

Related activation functions (forward)

The problematic behaviour of ReLU for negative values (esp. around
0) has motivated a number of related functions:

ReLU Leaky ReLU (a = 0.1)
" " ! i Y ") : 1
Exponential LU (ELU) Gaussian Error LU (GELU) / Swish
= " — ceww
] SiLU / Swish(1)

4 2 0 2 4 4 2 0 2 4 8/24

https://arxiv.org/pdf/1511.07289v5.pdf
https://arxiv.org/pdf/1606.08415v5.pdf
https://arxiv.org/pdf/1710.05941v2.pdf

Related activation functions (backward)

The problematic behaviour of ReLU for negative values (esp. around
0) has motivated a number of related functions:

ReLU’ Leaky ReLU’ (av = 0.1)
Exponential LU" (ELU") Gaussian Error LU’ (GELU") / Swish’
e o —— GELU
SiLU / Swish(1)

https://arxiv.org/pdf/1511.07289v5.pdf
https://arxiv.org/pdf/1606.08415v5.pdf
https://arxiv.org/pdf/1710.05941v2.pdf

Discussion (activation functions)
Some desirable properties of activation functions include:
e Non-linearity — needed for expressiveness
e Differentiability — enables gradient-based learning
e Zeros pass through — avoids need to “learn” zero outputs

e Approximates linear unit around 0 — mitigates vanishing gradient

Gradients bounded from above — stability
e Low computational cost — (Leaky) ReLU wins here

As usual, choice depends

> ReLU very common (e.g., MLPs, CNNs, transformers)

» Variants of ReLU beneficial and also common

» o uncommon, but has special uses (e.g., as output unit, for gating)

» tanh perhaps most traditional choice for MLPs

> tanh also used for normalization purposes (squash a signal into
[—1,1] range)

10/24

Results from Ramachandran et al. (2017)

Image classification (ImageNet 2012)

Mobile NASNet-A training curve

Suish train

— ReLUvalid

o so000 100000
Training steps

150000

200000

Model | Top-1Acc. (%) | Top-5Acc. (%)

LReLU | 73.8 739 742|916 919 0919
PReLU | 746 747 747 | 924 923 923
Softplus | 740 742 742 | 916 918 919
ELU 741 742 742|918 91.8 918
SELU 73.6 737 737 | 916 917 917
GELU 74.6 - - 92.0 - -

ReLU | 735 736 738 | 914 915 916
Swish-1 | 74.6 747 747 | 92.1 92.0 920
Swish 749 749 752|923 924 924

Figure 8: Training curves of Mobile NASNet-A Table 6: Mobile NASNet-A on ImageNet, with
3 different runs ordered by top-1 accuracy. The

on ImageNet. Best viewed in color

additional 2 GELU experiments are still training

at the time of submission.

Machine Translation (WMT 2014)

Model 2013 2014 2015 2016
LReLU 26.2 279 29.8 334
PReLU 26.3 27.7 29.7 33.1
Softplus 23.4 23.6 25.8 29.2
ELU 24.6 25.1 27.7 325
SELU 23.7 235 259 30.5
GELU 259 273 29.5 33.1
ReLU 26.1 27.8 29.8 333
Swish-1 26.2 28.0 30.1 34.0
Swish 26.5 27.6 30.0 33.1

Table 11: BLEU score of a 12 layer Transformer on WMT English—German.

11/24

https://arxiv.org/pdf/1710.05941v2.pdf
https://www.image-net.org/challenges/LSVRC/2012/
https://statmt.org/wmt14/translation-task.html

Exploding gradient problem

e Consider an activation function ¢ and recall:
Forward Backward

N e)] . 8.

e Exploding gradient problem

> If ¢'(v) > 1, the gradient becomes larger
> |If this happens in multiple consecutive layers, the gradient explodes
exponentially fast (since local gradients multiply)

e Problematic since output extremely sensitive to prior layers

» E.g., consider a weight vector w used in a prior layer
— VadJ very large — gradient-based learning fails (weight diverges)
» E.g., consider input « and corresponding output ¢ of a network
— Vg9 large, model predictions are unstable

e Usually does not occur due of the activation functions, but due
to other layers (e.g., linear layers — exercise)

12/24

Architectural design patterns

e Degradation problem: performance of MLPs tends to
deteriorate beyond a certain depth
» Complicated optimization landscape
» Gradients may vanish/explode exponentially fast with increasing
depth in MLP
» Can be mildened by choice of suitable activation function, but not
by much

e Coming up: architectural design patterns
> Key idea: modify the network architecture to mitigate training
challenges — better empirical performance
e Goals include

> Mitigate the vanishing gradient problem and, more generally,
improve gradient flow through network

> Facilitate training and effectiveness of (very) deep networks, i.e.,
mitigate the degradation problem

» Simplify the optimization landscape

13/24

Representation view

e Consider a parameterized layer f : R? — R? somewhere in an FNN

,Uin pout
()
> Eg., v = f(v") = ¢(W v +b)

> Note: layer parameters not explicitly shown

e Representation view
> " is representation of input obtained from previous layer
> v°Ut is updated representation of input for next layer
> A “step” in a multi-step computation
> How many steps? = network depth (L)
» How much memory? = network width (Z)

e Observe: If v'" is already a good representation, model needs to
learn to preserve it
» E.g., with linear units (¢(z) = x), must learn W =T and b=0
» Generally, with non-linear units, more involved — exercise

e The deeper the network is, the more this matters

— One reason for the degradation problem
14 /24

Residual connections (forward)

e Residual connections (He at al. 2015/2016) change the layer:

v

in

u

L)
<P

Y

l’

out

> |_e_’ ,Uout — ,Uin + f(,vin)
» Think of u = f(v™") as an update or residual

e Recall: If v'" is already a good representation, model needs to

learn to preserve it

> Now “easy” to do: need to learn a zero update (u = 0)
Usually obtained by zeroing out all layer parameters

>
> E.g., when f = ¢(W, v" +b;) and $(0) =0
>

Lowest regularization penalty (e.g., with ¢, regularization)

> Likewise, "easy” to perform smaller updates

e Reduced degradation of performance due to “too many” layers
> Easy for the network to learn identity mappings (all weights 0)
> Easy for network to not use “unnecessary” layers

15/24

https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1603.05027.pdf

Residual connections (backward)

e Let's look at the backward pass

Y pdate /f\A
N

6in 5out

e We obtain
6in — 6out + 6update
» During backward pass, gradient is “updated” as well
e After L such layers, gradient is
in t update update
6”’1_60[1 +6L _1_._._'_51

e Original gradient “passes through” — addresses vanishing
gradient problem

16 /24

Using residual connections

e Input and output dimensionality of f must match
» But can use different dimensionality “in between”
» Common choice: f =W, ¢(W] v™")
> E.g., T5-Base: 768D in — project up to 3072D — activation —
project back down to 768D

e We'll see residual connections through the lecture; e.g.,
» In recurrent neural networks: e.g., LSTM or GRU units
» In convolutional neural networks: e.g., ResNet
» In sequence models: e.g., Transformers

Example: ResNet on CIFAR-10 (as of 2015)

ertor (%)
error (%)
error (%)

10-laver

o

©] 0 T 3 4 S 6] H

g ¥ T
iter. (led) iter. {led) iter. (1

Figure 6. Training on CIFAR-10. Dashed lines denote training error, and bold lines denote testing error. Left: pla

of plain-110 is higher than 60% and not displayed. Middle: ResNets. Right: ResNets with 110 and 1202 layers.

G
ed)
in networks. The error

17/24

https://arxiv.org/pdf/1910.10683.pdf
https://direct.mit.edu/neco/article/9/8/1735/6109/Long-Short-Term-Memory
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1706.03762

Skip connections

e More generally, skip connections (also: shortcut connections)
skip one or more layers

new
v

(7
0

Y

out
combine——

A

» Here we “skip” over a single layer f
> Original representation ™ and the new representation v
combined

new are

e For residual blocks, we combine by adding
> We can then think of v"*" as an “update”

e Other common options include: concatenate (now); average,
max-pooling, attention (later)

18/24

Concatenating skip connections (1)

e One option is to concatenate representations
e Extreme case: concatenate all representations of previous layers

,UII'I

e Preservation of information across layers trivial

> Since directly provided as additional input
> Each layer merely “enhances” the current representation (increases

effective dimensionality)
e Suppose each layer produces Z-dimensional output and is

parameterized by one weight matrix
» Layer [has [Z inputs — increases linearly with L
> Weight matrices have form [Z x Z — increase linearly with L

> Total number of weights is Z% - L(L + 1)/2
— increases quadratically with L

19/24

Concatenating skip connections (2)

e Examples: DenseNet (images), JK-Net (graphs)

e Interestingly, concatenating skip connections can reduce cost

27.5 275
—a— ResNets —4— ResNets
ResNet-34 |—&— DenseNets-BC ResNet-34 —&— DenseNets-BC)
26.5| 1 265 - - . 1
£ 2535 & 255
e DenseNat-121 2 DengeNet-121
a @
£ s ResNet=50 g5 ResNat_50
B DenseMet-169 L]
= =
E 23.5| E 235
DenseNel-201 ResMNei-101 ResNet-101
22.5| ResNet-152 225 ResNei-152
DenseNet_264 DenseMet-264
21.5 215
1 2 3 4 5 6 7 8 05 075 1 125 15 175 2 225 25
#parameters X 107 #flops %10 0

Figure 3: Comparison of the DenseNets and ResNets top-1 error rates (single-crop

testing) on the ImageNet validation dataset as a function of learned parameters (left)
and FLOPs during test-time (right).

> Why? Can get away with much smaller per-layer output size (Z)

20/ 24

https://arxiv.org/abs/1608.06993
https://arxiv.org/pdf/1806.03536.pdf

Concatenating skip connections (backward)

e Let's look at the backward pass

e After L such layers, gradient is
" =08+ + 8

> Again, gradient from later layers is directly passed through

21/24

Impact on optimization landscape

GG-56 VGG-110
ResNet-56 DenseNet-110
(residual) (skip concat)

Wl

Li et al. (2018) 22/24

https://arxiv.org/pdf/1409.1556v6.pdf
https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/abs/1712.09913

Batch normalization

e Batch normalization (BN) is a layer that mitigates two problems
1. Covariate shift: when parameters of one layer change, the
(training distribution of) inputs to the next layer changes too
— ignored by gradient-based methods
2. Gradient magnitudes may vary wildly across layers
— complicates gradient-based learning

e During training, BN normalizes each of its input features to zero

mean and unit variance within each batch

> le., input z € RZ is normalized to output 2 = (2 — p)/Vo2,
where p, 02 € RZ are computed from the entire batch

» Important: this normalization is part of the “action” of the layer and
the gradient is backpropagated through these operations

» Variant: normalize to mean 3 and variance =, where 8 and ~ are
learned parameters

e At test time, use running average of u and o2 from training

e Strong empirical performance

23 /24

http://proceedings.mlr.press/v37/ioffe15.html

Layer normalization

e Batch normalization sometimes problemantic
» During training, batch size must be sufficiently large (e.g., no online

learning possible)

» When number of layers is not fixed but depends on input (e.g.,
RNN, Transformer), number of required mean/variance statistics
varies with input lengths

e Layer normalization (LN) is a simple alternative
> BN: normalize each input feature across the mini-batch (columns)

» LN: normalize each input vector individually (rows)

» For input z, set
z — mean(z)

norm(z) = ()

where mean/variance are computed across the elements of z
e Normalization methods differ in their invariance properties

Weight matrix Weight matrix Weight vector Dataset Dataset Single training case
re-scaling re-centering re-scaling re-scaling re-centering re-scaling
Batch norm Invariant No Invariant Invariant Invariant No
Weight norm Invariant No Invariant No No No
Layer norm Invariant Invariant No Invariant No Invariant
Table 1: Invariance properties under the normalization methods. 24 /24

https://arxiv.org/pdf/1607.06450.pdf

Deep Learning

03 — Gradient-Based Training
Part 4: Initialization

Prof. Dr. Rainer Gemulla
Universitdt Mannheim

Version: 2025-1

Initialization

e Initialization = choose starting value for all parameters

e Important since

> Affects solutions found by gradient-based optimizers
> Affects performance of gradient-based optimizers

e Suitable choice generally depends on archiceture

e Generally, in standard MLP, initializing weight matrices with
» Too small values — vanishing gradient
» Too large values — exploding gradient
» Constant values — bad solution

2/7

Zero initialization

e Consider a standard MLP (no skip conn.) with layers of form

Forward Backward

WT

zeR!
—_—

where W e RIxO

e Zero initialization (W = 0) is problematic
> If W =0,s0is 0,
> If §5 = c1, all weight vectors (rows of W) receive same gradients
» E.g., happens when all weight matrices are zero-initialized
» Consequence: all units at each layer always have the same output
(co-adaptation) — learning fails

e Likewise: initialization with constant problematic

3/7

Normal initialization (1)

e Normal initialization: WX initialized using iid. samples from
a normal distribution N(0, 0?)

e Analysis (forward)

» Suppose that z € RY ~ A/(0,) has standard normal distribution;
then

Elz] =0 and var[zg] =1
> Let s= W 'z € RO: then
Elsx] =0 and var[s] = Io?

» Variance increases with increased input dimensionality
> Depending on ¢ can lead to vanishing/exploding gradients

e Solution: initialize with samples from N(0, 02 /1)
— variance retained

4/7

Normal initialization (2)

e Analysis (backward)

> Suppose that 6, € RY ~ A(0, I) has standard normal distribution;
then

Elds,] =0 and var[ds,] =1
> Let §, = W, € RY; then
E[d,]=0 and var[s,, | = Oo?

> Variance increases with increased output dimensionality
» Depending on ¢ can lead to exploding gradients

e Solution: initialize with samples from A/(0,02/O) — variance
retained

5/7

Xavier/Kaiming initialization

e Generally, for MLPs, vanishing/exploding gradients mitigated at
the start when variances retained across layers

> Forward (use 02/I) and backward pass (use 02/0) affected
differently
» Need compromise

e For ¢ = tanh or linear: Xavier initialization

» Also: Glorot initialization
» Samples from

N(0,1/D) or U(—+/3/D,/3/D),
where D = (I + 0)/2

e For other activation functions, can multiply by gain
> E.g., for relu: /2 (Kaiming initialization, also He initializiation)

6/7

https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf

Discussion

e Initialization generally important

e Suitable scale matters for standard MLPs and depends on
dimensionality

e Different for other architectures; e.g.,
» Scaling less influential when layer/batch/weight normalization is
used
» For residual layers, typically want weight matrix to be small
— small update / initially close to identity
> For ResNet (vision), may use Fixup normalization

Fixup initialization (or: How to train a deep residual network without normalization)

1. Initialize the classification layer and the last layer of each residual branch to 0.
2. Initialize every other layer using a standard method (e.g., He et al. (2015)), and scale only
the weight layers inside residual branches by L™ =3

3. Add a scalar multiplier (initialized at 1) in every branch and a scalar bias (initialized at
0) before each convolution, linear, and element-wise activation layer.

e As usual: it depends — experience, hyperparameter search, ...

7/7

https://arxiv.org/abs/1901.09321

Deep Learning

04 — Layers for Categorical Data
Part 0: Overview

Prof. Dr. Rainer Gemulla
Universitdt Mannheim

Version: 2025-1

One-hot encoding

e How can we handle categorical inputs and outputs in FNNs?

e Recall: one-hot encoding for categorical inputs

» Encode with binary vector with one element per category
» Element that corresponds to actual value set to 1; rest 0
> Example: x € {red, green, blue }
>

Then x = green becomes x = (O 1 O)T

e So just one-hot encode? Usually not explicitly since

> Not efficient (increased compute cost)
> Limited parameter sharing (decreased quality)

e How to do better? — this lecture

2/4

Outline (Layers for Categorical Data)

0. Overview
1. Embedding and softmax layers
2. Word vectors (example)

3. Softmax with many classes

3/4

Summary

e Embedding layers for categorical data
» Standard approach to handle categorical data
(e.g., PyTorch Embedding)
> Directly store embeddings for each category
» Low-dimensional, continuous representations

e Word vectors
» Simple approach to obtain word representations
» Outdated but instructive
> CBOW: trained such that words can be reconstructed from average
word vectors of neighboring words

e Softmax with many classes is expensive
» Often prohibitively so — many approaches
» For training: e.g., hierarchical softmax, negative sampling
» For prediction: e.g., approximate maximum inner product search

4/4

https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

Deep Learning

04 — Layers for Categorical Data
Part 1: Embedding and Softmax Layers

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-4

Embedding layer (1)

e Consider an FNN with a single categorical input
» Vocabulary YV = {1,...,V } = set of categories
> Input v € V, one-hot encoded to e, € {0,1 }V
(where e, is v-th standard basis vector)
> Fully-connected first layer with Z hidden units

Categorical input Hidden Downstream
(one-hot encoded) representation network
T =€y Zy

e Downstream network sees z,, but not v or e,
» Input v represented by z,
» What can we say about 2,7

2/15

Embedding layer (2)

. . o]

e Action of first layer o)
> Weight matrix W € RV*Z = (w1 wo - wz) = .

> Bias vector b € R? _l_

> Activation function ¢ oy

» Layer output

veV —z, e R = ¢(W'e, +b) = ¢(0, + b)

def emb(v)

e An embedding layer directly stores embeddings (no computation)
> Maps each category v € V to a vector emb(v) € R?, the

embedding of v

» Parameterized by an V' x Z embedding matrix E
> Given categorical input v, outputs v-th row of E: emb(v) = E,.
» This is more efficient than modelling via fully-connected layer
» Variant: normalize embeddings (e.g., to unit norm)

e Examples: categories in tabular data, tokens in NLP, vertices in
graphs

3/15

Discussion

e Embedding layers may use large vocabularies (V' > Z7)
» Canonical example: words or tokens of text data
(V is tens of thousands, Z is a few hundreds)
» Input e, is sparse, discrete, high-dimensional
» Embedding emb(v) is dense, continuous, low-dimensional
> Layer performs dimensionality reduction / compression

e Many parameters for large vocabularies
» Glove word vectors: 2M x 300 ~ 2300 MB
P> LLaMa-7B language model: 32k x 4096 ~ 512 MB
P> ComplEx embeddings on Wikidata-5M: 5M x 128 ~ 2400 MB
> In some models, significant fraction of parameters resides in initial
embedding layer

e When multiple inputs use the same categories, embedding layer is
typically shared
> E.g., all of the examples above (for words, tokens, entities, resp.)
> Example of parameter sharing across layers (more later)
> Note: that's different from one-hot encoding each input

4/15

https://nlp.stanford.edu/projects/glove/
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1606.06357
https://deepgraphlearning.github.io/project/wikidata5m

Similarity

e Consider two categories v1 # V9

> Cosine similarity between e,, and e,, is 0
Cosine similarity between emb(v1) and emb(vy) generally # 0
When > 0: categories similar in embedding space
When < 0: categories dissimilar in embedding space
Embeddings expose similarities

vvyvyy

e Intuitively, two categories should be similar in embedding space
when they have similar impact on final output
» Directly encouraged when training embedding layer as part of FNN
> Indirectly (i.e., hopefully) when embedding layer is pretrained on
other data (e.g., word vectors)

5/15

Example: Word Vectors

Top-30 closest word2vec vectors to “God”, trained on the Bible

6/15

https://arxiv.org/abs/1301.3781

Embeddings as representations

e Recall from 02-1: DL as an approach to learn features

» Input objects x € X are transformed into dense, continuous,
low-dimensional representations called embeddings z € R%

» 7 = embedding dimensionality

> Useful to represent complex objects (categorical data, textual data,
graph data, tabular data, images, ...)

» Think: complex to work with objects, simple to work with
embeddings

» Useful embedding space = goal of representation learning

e Embedding layers used for categorical “non-divisible” objects
» Directly learn embedding for each category

e For “divisible” objects, use an encoder
» Embeddings are compositional, i.e., constructed from parts of the
object, e.g., by another neural net — exploit structure of the object
» E.g., Document embeddings, image embeddings, graph embeddings, ...
— Later lectures

7/15

t-SNE (1)
e Embedding spaces are high dimensional and difficult to visualize

o t-SNE (t-distributed Stochastic Neighbor Embedding) is popular
approach
> Maps embedding space (or any other high-dimensional input space)
to 2D/3D space such that “close neighborhoods” are
approximately retained (non-linear mapping)
> Resulting 2D /3D representations can then be visualized

e What's close? Similarity of embeddings z; to given embedding
z; measured with isotropic Gaussian kernel with bandwidth o;
(data-point specific; cf. ML 08/1):

sim(z;2i) = exp(—|lz; — zi[*/07) € [0,1]
e Used to define neighbor distribution over all embeddings j # i

p(jli) o exp(—lz; — zil*/o?) for je{l,....N}\{i}

» Bandwidth o; controls number of effective neighbors
» Small bandwidth — few neighbors (p(j]i) concentrated)
> Large bandwidth — many neighbors (p(j|¢) spread out) 815

https://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

Perplexity

e Let H; be the Shannon entropy of neighbor distribution p(j|i)
— Intuitively: number of effective neighbors of data point ¢ in
bits (recall: depends on o;)

e Let perplexity P; = 2H:
— Intuitively: number of effective neighbors of data point ¢
e Consider a dataset with 4 examples. For example i =4, let 1, 5,
20 be the Euclidean distances of examples j =1, j = 2, and
j = 3 to example 4, respectively.
e Small bandwidth (02 = 3)

1.0

0.5

0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 175 20.0

» Similarities: 0.72,0.00,0.00 — distribution p(j]4): 1.00,0.00,0.00
» Entropy: H; ~ 0 — perplexity: P; ~ 1

9/15

e Medium bandwidth (o3 = 75)

1.0
0.5
0.0 : - : : : : :

0.0 2.5 5.0 7.5 100 125 150 175 200

> Similarities: 0.99,0.72,0.00 — distribution p(j]4): 0.58,0.42,0.00
» Entropy: H; ~ 1 — perplexity: P; ~ 2

e Large bandwidth (o7 = 10000)

1.0
0.5 1
001 e *
0.0 2.5 5.0 7.5 10.0 125 15.0 175 20.0

> Similarities: 0.99,0.99,0.96 — distribution p(j]4): 0.34,0.34,0.32
» Entropy: H; ~ 1.58 — perplexity: P; =~ 3

Fixed perplexity — fixed number of effective neighbors. 015

t-SNE (2)

e t-SNE uses a target perplexity P as hyperparameter
> Typically set to 5-50
» o2 chosen such that P, = P (i.e., o; different for each i)

e In 2D /3D space, t-SNE uses the Cauchy distribution instead
» Heavier tails than Gaussian kernel
» Consequence: (more) ok if embeddings with “moderate” similarity
are far in 2D/3D space

1
0.5
0
-0.5
-1

High—dimensional distance >

Gradient of t-SNE

e Fit via gradient descent (w/ momentum), using KL divergence
loss between the neighborhood distributions in embeddings space
and in 2D /3D space — only effective neighbors matter (!) 11/15

Low-dimensional distance >

https://en.wikipedia.org/wiki/Cauchy_distribution

Example (6000 MNIST handwritten digits;
28 x 28 = 784D — 2D)

©oONOOOMWN-—=O

12/15

http://yann.lecun.com/exdb/mnist/

t-SNE (discussion)

e Popular, useful method

» Can visualize sets of inputs, embeddings, weight vectors, ...
> Transductive (i.e., visualizes a fixed set)

e Hyperparameters matter

» Perplexity can have significant impact on result

> t-SNE is an iterative algorithm — don’t stop too early

> Learning rate has a significant impact, too

> Repeated runs of t-SNE may produce (very) different results

e Interpretation is tricky

> Sole goal: close data points in embedding space should stay close

> Distances, “cluster sizes,” and “cluster locations” in t-SNE
plot often meaningless

» Patterns visible in t-SNE plot may not be real patterns

» Helpful: experiment with different choices of perplexity

e See Wattenberg et al. (2016) for examples and discussion

13/15

https://distill.pub/2016/misread-tsne/

Recall: Softmax layer

e Recall: softmax layers for classification (categorical outputs)
» (classes, input z € RZ from the previous layer

Wiz+b

>

v

Figure 4.4 Softmax distribution S(n/T"), where n = (3,0, 1), at different temperatures 7. When the
temperature is high (left), the distribution is uniform, whereas when the temperature is low (right), the
distribution is “spiky”, with all its mass on the largest element. Figure generated by sof tmaxDemo2.

Softmax layer computes §y = S

T

n = W z + b contains softmax scores of each class

1y € Sc contains predicted class probabilities
T € Ry, is a hyperparameter known as the temperature

— Controls smoothness of distribution

As T — 0, the resulting distribution concentrates around the largest

softmax score — most likely prediction

0.4
0.3
0.2
0.1

T=100

T=0.1

1 2 3

0.5

T=0.01

2

3

14 /15

Interpreting softmax layers

e Let's assume no biasand T =1
g=SW'z)

e Class probabilities implicitly determined by softmax scores
ne =w; z = ||z [wel cos £(we, 2)

e Consider some input z (arbitrary, but fixed)
> ||z|| acts as “inverse temperature”
» Corresponding temperature is T =1/ ||z||
> Norm of z controls uniformity of softmax distribution

e Suppose all weight vectors have unit norm (||w.| = 1)
> Softmax layer then measures the similarity between input z and
each class vector w,,

e When weight vectors have different norms, then ||w.|| acts as
coefficient of proportionality (think: class weight)

e If we had a bias term, then bias serves as a priori softmax

score (since then 1. = w/ z + b.; think: class prior)
15/15

Deep Learning

04 — Layers for Categorical Data
Part 2: Word Vectors (Example)

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-1

Word vectors (1)

e Now: word vectors (or word embeddings)

> An example of using embedding layers and a softmax layer
(Was) used to represent words in a variety of NLP tasks
Simple and effective

Not really relevant anymore, but instructive example

> And: key ideas relevant later (starting from 05)

vvyy

e Word vectors (distributed word representations) map words to
continuous representations; goals:

1. Capture semantic similarity between words, i.e., provide similar
representations for words that have similar meanings
(e.g., "God" and “Lord")

2. Compositionality to obtain sequence representations
e Pretrained on large text corpora

e Why use word vectors? As before, downstream models then

> Have significantly less parameters to train (recall: Z < V)
» Uses “meaning”’ of words, not words themselves
» Can handle words unseen in downstream training data

2/6

https://openreview.net/pdf?id=SyK00v5xx

Word vectors (2)

e How to obtain word vectors?
» Distributional hypothesis in linguistics states that words that
occur in similar contexts tend to have similar meanings
» Key idea: train word vectors such that words that appear in similar
contexts have similar representations
» Under this hypothesis: similar representation — similar meaning

e Example: continuous bag-of-words (CBOW) model
» Task: predict missing word given the set of surrounding words
(= context)
» Hyperparameter Z: size of word vector
> Hyperparameter W: size of left/right context

3/6

https://arxiv.org/abs/1301.3781

CBOW (1)

Task: predict current word w; given its 2W surrounding words

(= context).

Mikolov et al., 2012

INPUT PROJECTION OUTPUT

w(t-2)

wit-1)

SUM

w(t+1)

w(t+2)

4/6

https://arxiv.org/abs/1301.3781

CBOW (2)

e How to read this architecture?

e Input layer
> Maps words to word vectors (each of the 21W words separately) via
an embedding layer
» Embedding matrix E € RV*Z shared across context words
— parameter sharing
> Note: embedding layer in NLP literature often implicit
(i.e., not explicitly drawn, as in previous slide)

e Sum layer
> Takes 2IW embeddings and sums element-wise (composition)
— Z-dimensional continuous representation of context
> Note:), e,, = word counts — bag-of-words
» Note:). emb(w;) = word vector sums — “continuous” bag-of-words

e OQutput layer
> Softmax, trained to predict w; (C' =V classes)
» Parameterized by weight matrix W € RZ*¢
(note: ignored for downstream models, i.e., only E used)

> Again: softmax layer often implicit when categorical output
5/6

Discussion

e Recall key idea: train word vectors such that words that appear in
similar contexts have similar representations

e Context representation z is a bottleneck
» Z-dimensional representation of 2WWV -dimensional context
» Forces “compression”, exposes similarities

e Representation z should be “useful” to predict missing word
> Recall: softmax score 7). of word ¢ proportional to (cosine)
similarity of context representation z and weight vector w,
> All contexts of word c ideally represented by a vector z similar to w,
— Exposes context similarities
> Since z is composed of word vectors, the word vectors implictly
expose word similarity

e Training
> Slide window over text corpora, optimize loss (e.g., CE)
> In practice, skip-gram model tends to work better (given current
word, predict context words)
» Cheap except the softmax layer (1)

— CBOW uses “hierarchical softmax”
6/6

https://arxiv.org/pdf/1301.3781.pdf

Deep Learning

04 — Layers for Categorical Data
Part 3: Softmax with Many Classes

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-1

Softmax with many classes

e Consider a softmax layer with C' outputs (p) and Z inputs from
the previous layer (z). We have

be)
c:S V‘/—r b c = exp(<w07z>+ c .
P (W 'z +4b) S exp((we, 2) + by)

e During training, given example (x,y)
> Need to compute output during forward pass

py = p(ylz.0) = p(ylz, W.b) = S(W'2 +b),,
where z depends on x and 6 (= all model parameters)
» To do so, we need to compute all terms exp({(w, z) + ber)

> Complexity: O(ZC') per example — expensive when ZC' large

> Gradient in backprop generally non-zero for all parameters (W & b)
e E.g., word vectors trained on Google News: C' = 3M

> CBOW with W = 2: Add 4 vectors to obtain hidden representation

z, compute 3M inner products/exponents for softmax output
» Common approach: avoid plain softmax

2/11

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit

Hierarchical softmax (1)

e Hierarchical softmax layer: arrange classes in a “decision tree”
> Input is z (= output of layer before softmax),

Output is p (= probability for each class)

Leaves are classes

Interior vertices are decision points

Each possible choice associated with a probability

> Probability of class = product of probabilities of corresponding path

vVvyVvyy

e Example: two alternative trees for C=16

3/11

Hierarchical softmax (2)

e To model the probability distribution over the children of each
interior vertex, use softmax
» One weight matrix and bias vector per interior node
> Probability distribution over children of v; is S(W, z + b;)
> Note: z is used at each interior node
— Influences all decisions

e Flat tree — Output is p, = S(W 'z + b), = softmax

» Output p, depends on entire W and b
— C weight vectors and bias terms

4/11

Hierarchical softmax (3)

e Binary trees
> Store weight vector and (scalar) bias at each interior node
» (C classes — C — 1 interior nodes / weight vectors / bias terms
> Probability p, of, say, leaf y = 0101 is

S(0,w " z4b)o-S(0,wg z+by)1-S(0, wdy 2+bo1)o-S(0, wyy02+bo1o)1

— Only depends on 4 (out of 15) weight vectors and bias terms

e Balanced binary trees
> In general: C classes — access log, C weight vectors / bias terms
> E.g., for C =3M — log, C =~ 22
> Much more efficient to compute
> All other weight vectors / biases have zero gradient during backprops

Hierarchical softmax (4)

e Choice of tree matters for prediction performance

» Hierarchical softmax is able to produce good predictions if the
classes in the “right” subtree are easy to discriminate from the
classes of the “wrong" subtrees (by softmax classifier)

» E.g., for words: cluster words and recursively partition them into
two clusters — hierarchical softmax can achieve similar prediciton
performance as regular softmax

» E.g., when classes arranged in hierarchy — use directly

e Choice of tree matters for training speed
> Flat: as slow as softmax
» Balanced: logarithmic cost
> Fastest: Huffman tree based on class frequencies
— Minimize expected path lengths (frequent classes — short path)

e No/limited runtime improvement during prediction

> Still need to compute all probabilities to get distribution over labels
> Largest-probability prediction can often be obtained faster
(e.g., best-first search, beam search, MIPS)

6/11

http://papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model.pdf
http://papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model.pdf
https://en.wikipedia.org/wiki/Best-first_search
https://en.wikipedia.org/wiki/Beam_search
https://en.wikipedia.org/wiki/Maximum_inner-product_search

Sampling-based approximate softmax (1)

e Many other approaches to approximate softmax exist, most
notably, based on sampling

e Fix some z, let n. = (w,, z) + b, and p. = S(WTz +b).
e Log-likelihood for a single example (x,y) is

exp(7y)

=1 =1 T240b), =log —— 1 _
¢ =logp, =1logS(W 'z +b), =log S exp()

=1y —log Y _ exp(nc)

where as before, z depends on 2 and parameters 6

e Gradient is

Vol = Vo, — Volog y exp(ne) = -

= Vony — chveﬁc = Vony — ECNCat(p) [Vone]

7/11

Sampling-based approximate softmax (2)

e Gradient: Vol = Vgn, — Ec cat(p) Vo
» Part 1: Vgn, — positive reinforcement for current class

» Part 2: E.cat(p)[Veone] — (weighted) negative reinforcement
for other classes

e Sampling-based approaches approximate neg. reinforcement term
» This would be easy if we could sample from distribution Cat(p),
but computing p is what we try to avoid in the first place
> Simple, common heuristic: negative sampling
— Sample uniformly (instead of using p), no guarantees, but cheap
> Many more approaches have been proposed (e.g., adaptive
importance sampling or noise contrastive estimation)

e For more on approximating softmax, see S. Ruder (2016)

e Classification with many classes sometimes called extreme
classification

» Important problem in practice
» Active research topic

8/11

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://ieeexplore.ieee.org/document/4443871
https://ieeexplore.ieee.org/document/4443871
https://www.cs.helsinki.fi/u/ahyvarin/papers/Gutmann10AISTATS.pdf
overview by https://www.ruder.io/word-embeddings-softmax/
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

Maximum inner product search

e For prediction, may only care about most-likely prediction
> Most-likely prediction = largest softmax score
» Since: logp(y|x) = ny —log > exp(n.) = ny + C(x), where C(x)
depends on x only (=constant)
e Softmax scores are W ' z (ignoring bias)
> Som =w] z, 1 = w, z, ...,nczwgz
» Most-likely prediction = w, with largest inner product with z
> Note: that's the prediction at “temperature T' = 0" (cf. 04-2)

e Maximum inner product search

> Given upfront and indexed: set of vectors W = {wy,...,w¢ }
» Query: another vector z

» OQutput: top-k inner-products (of vectors in W with z)

> Slow to do exactly (e.g., our work on LEMP), but many fast

approximate methods exists

Special case of approximate nearest neighbor search
Applications include: “temperature 0" softmax prediction, search in
vector stores

vy

9/11

https://www.uni-mannheim.de/media/Einrichtungen/dws/Files_Research/teflioudi16lemp-draft.pdf

Example (glove-100-angular, k£ = 10)

Recall-Queries per second (1/s) tradeoff - up and to the right is better

=M= NGT-qg
=@~ hnsw(nmslib)
asgngt
=#= NGT-panng
glass
=}~ scann
4= vearch
== vamanaldiskann)
=@~ Milvus(Knowhere)
~34= pynndescent
-4 n2
== faiss-ivipqfs
=#= hnswifaiss)
== hnswlib
hnsw(vespa)
== redisearch
=@~ vald(NGT-anng}
=M= luceneknn
=i weaviate
=@~ sw-graph(nmslib)
== faiss-ivf

104 4

10%

Queries per second (1/s)

10? { =+ mrpt
= annoy
qdrant
== puffinn
=@= pgvector
=4= tinyknn
| BallTree(nmslib)
t| =% bruteforce-blas

10t

0.0 0.2 0.4 0.6 0.8 10
ANN Benchmarks Fecall 10/11

https://ann-benchmarks.com/

NeurlPS'23 Competition Track:
Big-ANN

Supported by 2 Microsoft ¢ Pinecone

Filter track

Algorithm

aws Sk zilliz

New: the latest ongoing leaderboard has been released (March 1st, 2024).
Top entries:

QPS®90% recall

Rank

00D track

Sparse track

Algorithm QPS@90% recall Rank Algorithm QPS@90% recall
1 Pinecone-filter 85,491 1 Pinecone-ood 38,088 1 Zilliz 10,749
2 Zilliz 84,596 2 Zilliz 33,241 2 Pinecone_smips 10,440
3 ParlayANN IVF2 37,902 3 RoarANN 22,656 3 PyANNS 8,732
4 Puck 19,193 4 PyANNS 22,296 4 shnsw 137
Baseline FAISS 3,032 Baseline Diskann 4133 Baseline Linscan 93

Note: entries by pinecone and zilliz are not open source.

Full Leader

Plots, and Rules

11/11

https://big-ann-benchmarks.com/neurips23.html

Deep Learning
05 — Part Embeddings

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-1

Part embeddings

® So far, we considered monolithic inputs (e.g., real-valued vectors
or categorical inputs)

From now on: (more) structured input spaces

> |.e., inputs that consists of multiple parts

> E.g., text documents — words or tokens (sequence)
> E.g., images — pixels (grid)

> E.g., graphs — vertices, edges (irregular)

» E.g., shopping cart — products (set)

Global embeddings represent the entire input
» Useful for input-level tasks

Part embeddings represent individual parts

» Useful for part-level tasks

» Also used to obtain global embeddings
(recall: compositional embeddings from 04-1)

General approach (forward pass)
1. Obtain part embeddings and/or global embedding
2. Add prediction head (or other downstream network) on top to
obtain final output 2/13

Example: Part-of-speech tagging (part-level task)

DT NN VBD DT NN
Pred. Pred. Pred. Pred. Pred.
Hgad He‘ad He‘ad Hgad Hgad
Part 1 Part 2 Part 3 Part 4 Part 5
Embed. Emped. Emped. Em‘bed. Em‘bed.

Deep Learning

Partl‘ ‘PartZ‘ ‘Part3‘ ‘Part4‘ ‘Part5

The

dog

ate

the

cake

3/13

Example: Sentiment classification (input-level task)

Negative!
Pred.
He‘ad

Global
Embedding

Deep Learning

A

Part 1

Part 2

Part 3

Part 4

Part 5

The

dog

ate

the

cake

4/13

Example: GNNs (input-level task)

Molecular property prediction

Molecule to Graph Neural Network Graph to Network for
graph layers vector operation prediction

for each node: ©—>0->eee>0 > O citrus
A baked spicy
TR odorless

clean alcoholic beefy

138 odor descriptors

fruity

Embedding space

Graph
embeddings

O T

Figure 2: Model Schematic. Each molecule is first featurized by its constituent atoms, bonds,
and connectivities. Each Graph Neural Network (GNN) layer, here represented as different colors,
transforms the features from the previous layer. The outputs from the final GNN layer is reduced to a
vector, which is then used for predicting odor descriptors via a fully-connected neural network. We
retrieve graph embeddings from the penultimate layer of the model. An example of the embedding
space representation for four odor descriptors is shown in the bottom right; the colors of the regions
in this plot correspond to the colors of odor descriptors in top right.

Sanchez-Lengeling et al., 2019 5/13

https://arxiv.org/abs/1910.10685

Key operations

® |nput represented in terms of
> Global features (if any)
> Parts and relationship between parts (e.g., order in a sequence or
edges in a graph)
> Part features (= initial part embeddings)

® Three key operations

1. Contextualization: incorporate information from other parts into
each part embedding

2. Local compute: update each part embedding individually

3. Pooling: aggregate multiple (or all) part embeddings

e We will see: many architectures follow this high-level pattern

e Each operation can be fixed a priori or be learned from data
» Different architectures differ in how this is done
» Operations may occur multiple times and in different orders
» Sometimes: multiple operations merged into one
> Sometimes: other operations (e.g., drop parts)

6/13

0. Input representation

e | recently biked from Mannheim to Weiler Stein and back
» Task: How many meters did | climb? (input-level)
P Let's solve this task using the three key operations

® We start with in input representation
> Here is the altitude profile

L]
400 A °
L]

L]

L]

200 A)

L -
0 b T T T T T T T T T
0 20 40 60 80 100 120 140 160

> Parts = measurements at 1 minute intervals (ca. 150 parts)
» Initial part representation: altitude at that time
> Relationship: sequence (ordered)

7/13

1. Contextualization

e Contextualization: incorporate information from other parts
into each part embedding
» Input: part embeddings
» Qutput: contextualized part embeddings
> Updated representation of each part depends on some/all other parts
> Examples: convolution, recurrence, self-attention

® For our example, let's compute the increment/decrement in
altitude w.r.t. the previous timestep

. JM..'
0 Nt "

L]
0 20 40 60 80 100 120 140 160

> We will see: that's a “convolution” operation

» Observe that relationship between parts (here: order) matters
» Contextualized parts now represent altitude changes

» Each part representation depends on other parts

— contextualization 8/13

2. Local compute

® |ocal compute: update each part embedding individually
1. Applied individually to each part
2. Input: one part embedding
3. Output: updated part embedding
4. Updated representation of each part depends only on its own

representation
5. Example: MLP

® |et's zero out the downhill parts

?e
& 2P,
.

101 L4 .
.
[1 [34

o ol Nel S a0
01 e o*-ﬁ:..'«- Nt : :
0 20 40 60 80

» That's a part-wise ReLU operation
> Relationship between and values of other parts ignored
» Updated parts now represent altitude increments

9/13

3. Pooling

® Pooling: aggregate multiple (or all) part embeddings

» Input: multiple part embeddings
» Qutput: aggregated embedding
» Examples: mean pooling, sum pooling, max pooling, attention

® Special case: readout = pool all part embeddings to obtain
global embedding

® |et's sum up the altitude increments

» Result: 503.4m

» That's a sum-pooling operation

> It's also a readout: all “embeddings” are pooled together
» In this case, no prediction head required

10/13

Template models, parameters sharing

® We've obtained the final result by
> Starting with part embeddings
> Contexualizing and updating the part embeddings
> A final readout operation to obtain a global representation

® |nstance of a template model
» |.e., a set of rules used to construct a neural network

> E.g., “compute the difference to the previous part”

(contextualization)

> E.g., “zero out negative values’ (local compute)

» The same template would also work for other inputs and with
different numbers of parts (e.g., shorter or longer rides)

® We used parameter sharing
» Each individual operation was the same for all parts

» But with different inputs
» When we use parameterized (learned) functions, we share the

parameters across parts
® Both template modeling and parameter sharing are used by many
DL architectures — coming up
11/13

Recall: CBOW

Task: predict current word w; given its 2W surrounding words
(= context).

Local compute Pooling Prediction head
(embedding layer) (sum) (softmax layer)

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)
\SUM

— w(t)

\

w(t+1)

w(t+2)

Mikolov et al., 2012 12/13

https://arxiv.org/abs/1301.3781

Preview: Parallel processing and cost

® |ocal compute
> (Embarrassingly) easy to parallelize — process parts independently

e Contextualization
> Sometimes sequential computation needed (n parts — n steps)
— Limited parallelizability (e.g., non-linear RNNs)
> Sometimes compute-heavy (n parts — n? pairwise influences)
— Easy to parallelize, limited scalability (e.g., Transformer encoder)
> Sometimes intermediate (each part influenced by only some parts)
— Still parallelizable, better scalability (e.g., CNNs, GNNs)

® Pooling
» Depends
> Sometimes comparably cheap (e.g., readout, done once)
> Sometimes part of contextualization (e.g., attention in
Transformers, done many times)

13/13

Deep Learning

06 — Convolutional Neural Networks

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-3

Outline

1. Introduction

2/56

Grid data

e Convolutional neural networks (CNN) are a family of neural
networks for processing grid data

>
>
>
>

1D grid — sequential data (e.g., time series, text, audio, ...)
2D grids (images)

3D grids (movies, CT scans)

Data in such a grid layout referred to as volume

® Grid data means: neighboring points related

>

vVVvVVYyY

Roughly: random permutation along each grid dimension leads to
loss of information

E.g., in time series: neighboring points are temporally close

E.g., in images: neighboring points are spatially close

E.g., in videos: neighboring points are spatially/temporally close
E.g., not in user-product sales matrix: row and column ordering
arbitrary

3/56

Grid, volume, parts (1D)

® Part-based view of grid data (cf. lecture 05)
> Grid points correspond to parts (later also: grid regions)
> Features correspond to part representations/embeddings
» Parts and their representations represented in a volume

e Example: 1D grid, 1 feature (e.g, time series)

L]
400 - °
L]

L]

L]

200 A)

N
O b T T T T T T T T T
0 20 40 60 80 100 120 140 160

> 1 grid dimension (time), 1 feature (altitude)

> Grid points correspond to parts (minute intervals; ca. 150)
> Features correspond to part representation (1 per part)

> Both together form a 150 x 1 volume

e Example: 1D grid, 3 features (e.g., multivariate time series)
> Suppose we had three features (altitude, latitude, longitude)

» Then each part represented by 3 values — 150 x 3 volume .

Grid, volume, parts (2D)

e Example: 2D grid, 3 features (e.g., images)

ya
- o

> 2 grid dimensions (width, height), 3 features (red, green, blue)
> Grid points correspond to parts (pixels; 8 x 8 = 64 in total)

» Features correspond to part representation (3 per part)

> All together form an 8 x 8 x 3 volume

® Discussion
> Neighborhood relationship on grid dimensions (parts)
» But not on feature dimension (convention: last dimension)
> A feature's values for all parts = feature map or channel
(here: 3, each 8 x 8)
Initial part representations are input
(One) goal of CNNs: better (contextualized) part representations

vy

5/56

CNNs at a glance (1)

e Key ingredients
> Part-based modeling (cf. lecture 05)
» Template modeling
» Parameter sharing (across parts / grid dimensions)

® Main application areas include

» Computer vision: e.g., object recognition and classification
(characters, persons, traffic signs, ...)

» Natural language processing: e.g., character-level modeling

> Signal processing (e.g., audio, time series, ...)

® Example tasks

> Part-based tasks (e.g., image segmentation, anomaly detection)
> Global tasks (e.g., image classification)
> Also: intermediates (e.g., object detection, forecasting)

6/56

CNNs at a glance (2)

® Recall: Three key operations of part-based models (cf. lecture 05)
1. Contextualization: incorporate information from other parts into
each part embedding
2. Local compute: update each part embedding individually
3. Pooling: aggregate multiple (or all) part embeddings
e Contextualization operation: convolution
» Computes contextualized part embeddings
» Technically: CNN is an FNN with at least one layer that performs a
convolution operation (instead of matrix multiplication)
® |ocal compute: typically one of
» Just an activation function (traditional CNNs)
> Feature pooling / MLP / 1 x 1 convolution (modern CNNs)
® Pooling operation

> Reduce number of parts: drop parts (“stride”), spatial pooling
» Readout: MLP

7/56

Example CNN

ing spatial sum pooling)

Pooling (us

Local compute (using ReLU)

el dls =]l L2]

(1 1 0)

n with k

[NV AN AN AN AN

[J L J[o][« Lo][e]

Why not use MLPs?

Drawbacks of MLPs for grid data:
1. Too many parameters
» E.g., consider a 1000 x 1000 x 3 grid
» MLP has 3 M parameters per output neuron (!)
2. Locality (i.e., neighborhood relationships) not exploited
» MLP unaware of grid structure of the data
» In fact: training MLP on (consistently) permuted data — same
result
3. No translation invariance
» Translation invariance: translation of input does not affect output
> E.g., in image classification: translated object — same class
» MLP must individually learn to recognize a given object at different
positions
4. Cannot handle inputs of varying sizes
» CNNs (sometimes) can do this

We will see: Inductive bias of CNNs
helps to mitigate these points.

9/56

Outline

2. Convolution and cross-correlation

10/56

Background: Convolution

e A convolution is defined as

+oo
y(t) = (xxk)(t) = / x(T)k(t —) dr

—00

® |nvolved functions
> Input signal z : R — R (e.g., time — feature)
> Kernel (filter) kK : R — R (e.g., age — weight)
» Output signal y (e.g., time — contextualized feature)
> Note: * is commutative; first/second argument by convention

® Interpretation for a temporal signal (¢ and 7 are “times”)
> ¢ is time in output signal (e.g., 20)
> 7 is time in input signal (e.g., 15)
> ¢ — 7 is (signed) age of input at output (e.g., 5)
> k(t —7) is weight of time-7 input at time-t output
— Depends only on age of input

® For each ¢, computes a “weighted sum” of all inputs x, where the
weight of z(7) depends its age a =t — 7 via k(a)

11/56

Discrete convolution

e A discrete convolution is defined as
+oo
y(t) = (zxr)(t) = > z(r)s(t—T1)

T=—00

® |nvolved functions
> Input signal z : Q — R (e.g., position — feature)
> Kernel (filter) k: Q — R (e.g., age — weight)
» Output signal y (e.g., position — contextualized feature)
> Note: * is commutative; first/second argument by convention

® Interpretation for a temporal signal (¢ and 7 are “positions”)
> ¢ is position in output signal (e.g., 20)
» 7 is position in input signal (e.g., 15)
> ¢ — 7 is (signed) age of input at output (e.g., 5)
> k(t —7) is weight of position-7 input at position-t output
— Depends only on age of input

® For each ¢, computes a weighted sum of all inputs z, where the

weight of z(7) depends its age a =t — 7 via k(a)
12/56

Discrete convolution example (1)

10.00
X 5.00 A
000+=a o o a o o a a a | o o a o o o oo
-10 -5 5 10
t
g 0.20 I
: [
x
0.00 , ! e
-10 -5 0 5 10
age
10.00
= i
g s.00 T
o.oo~~“¢--~‘.TT"e“‘-
~10 -5 0

5 10
t

13/56

Discrete convolution example (2)

10.00
X 5.00 A
000 b a o o a o a o aa oo a e oo
-10 -5 5 10
t
3 0.20 I
: [
x
0.00 , ! e
-10 -5 0 5 10
age
10.00
= i
i 1] [It
000+ = a o o o o a o | | Te.
~10 -5 0

14 /56

Discrete convolution example (3)

10.00

x(t)

5.00

0.00
-100

=50 50 100
t

0.02

k(age)

0.00
-100 =50 0 50 100
age

10.00

y(t)

5.00 A

0.00
—100

=50 50

15/56

Discrete cross-correlation

® Another interpretation
> Flip the kernel
> Slide the flipped kernel over the input signal
» Take point-wise products and integrate

® Related: discrete cross-correlation

o0

y(t) = (@xr)(t) = Y a(r)r(r —1)

T=—00

> Observe: k(T —t) = k(—(t — 7)) = k(—age)
» Interpretation as above, but

without kernel flipping
> Not commutative anymore

® That's used in CNNs; called convolution
without kernel flipping or simply convolution

® In CNNs, « is learned — no conceptual difference

Convolution

" N

2=
o)

WX

PF

F;
Pbg

16 /56

Convolution and cross-correlation
Convolution Cross-correlation

X X
W INL W INL
X*W X*W /l }

/rﬂmh-m Nninggn N
Ry N
1A i~
Kﬁl_“h\m rr\‘/ﬂ\'m
I URENVE i RN

N i NI

Wikipedia 17 /56

https://en.wikipedia.org/wiki/Convolution

Discrete cross-correlation (1)

10.00
;5.00'
000+—= = = o 2 = o o o o o o o a0 o aaa
-10 -5 0 5 10
t
o
£ 0.20
I
<
0.00 , T‘
-10 -5 0 5 10
future
10.00
= i
;5.00
0.00 ““e”?TT‘--~¢“‘-
-10 -5 0 5 10

t 18 /56

Discrete cross-correlation (2)

10.00
X 5.00 A
0.00 o o o o g o aa a o o a a a
-10 -5 0 5 10
t
o
£ 0.20
I
<
0.00 , ! e
-10 -5 0 5 10
future
10.00
= i
. 1] [T
o.oo~~“e’T ' TT““
-10 -5 0 5 10

t 19/56

Discrete cross-correlation (3)

10.00
X 5.00 A
0.00 T Y T
-100 -50 0 50 100
t
B
2 0.02
=
<
0.00
-100 -50 0 50 100
future
10.00
= 4
x 5.00
0.00 f T Y
-100 -50 0 50 100

t 20/56

Discrete convolution after flipping kernel

10.00

5.00

x(t)

0.00
-100

=50 50 100
t

0.02

k(age)

0.00
-100 =50 0 50 100
age

10.00

y(t)

5.00 A

0.00
—100

=50 0 50 100
t

21/56

Outline

3. Convolutional layers

22/56

Vector representation

® |et's rewrite discrete cross-correlation
oo

y(t) = (zxr)(t) = Y a(t+7)r(r)

T=—00

® In ML, input x, kernel x, and output y often represented by
vectors x, k, and y, resp.
> Eg,x=(10 20 15)°
» Corresponding function: z(1) = 10, x(2) = 20, z(3) = 15

e Different boundary conditions are possible — padding
> E.g., whatisz(t) fort ¢ {1,2,3}7
> Zero padding — all 0
» Reflection padding: mirror data at the boundaries
(e.g., z(4) =15, z(5) = 20, z(6) = 10)

e Useful: Interpret kernel as centered and zero-padded
> Eg, k= (10 20 15)
» Corresponding function: x(—1) =10, x(0) = 20, k(1) = 15

23/56

Discrete cross-correlation, vector form

® |et's suppose k has kernel size K =2W + 1
» k(r)=0for7r < —Wand 7 >W

® Discrete cross-correlation then becomes
W
y(t) = (xxr)(t) = D> a(t+71)s(r)

=W

> Now a finite sum — easy to compute

® Example: k= (1 0 —1) of size K =3 (W =1)
Input x 0O 1 2 4 8 4 2 1 0
Output y 2 3 6 0 6 3 2

® As discussed: Output obtained by sliding the kernel over the
input, taking element-wise products, and summing up
> E.g., for output yo = —3
lhputz |0 1 2 4 8 4 2 1 0
Kernel k 1 0 -1
Output y 2 3 6 0 6 3 2
» Observe: only a region of size K = 3 from input accessed

24 /56

Discrete cross-correlation, tensor form

® For higher-dimensional grids, inputs, kernels, and outputs are
multivariate functions
> E.g., for a 2D grid

y(t1,t2) = Z Z x(t1 + 71, t2 + T2)Kk(T1, T2)
T1=— W17'2—
> Kernel size is now K; x Ko = (2W1 + 1) x (2Wy + 1)

— kernel matrix
» We now slide this matrix over the input, take element-wise products,

and sum up
» The corresponding operation is called a A| x K5 convolution

® For a grid of D dimensions, kernel tensor also has D grid

dimensions
» Likewise, input tensor and output tensor

25 /56

MLP vs. convolution layer at a glance

local connectivity weight sharing
| v v
neural — e
activations —— /%E %* —
I = fit
neural
connections
o/ r ™
. /I AR /[AR WY
input '
signal
fully connected (MLP)

locally connected convolutional (CNN)

Weiler (2023)

26 /56

https://maurice-weiler.gitlab.io/blog_post/cnn-book_2_conventional_cnns/

Example: 3 x 3 convolutions

0 0

Identity 0 1
0 0
1 1
Box blur % 11
1 1
0 -1

Edge detection -1 4
0 -1
0 -1

Sharpen -1 5

27/56

Convolutions as FNNs

® \We can represent a convolution as a linear FNN

Weights (=kernel matrix) shared across all neurons
— parameter sharing

Kernel moved systematically over data
— template model

Kernel touches few inputs
— sparsity

Inputs are spatially close
— locality 2856

Convolutional layers

® CNNs are composed of convolutional layers + nonlinearity
» Performs multiple convolutions, each with a different kernel
> l.e., produces multiple feature maps (also called channels)
» Generally: takes in input volume, produces an output volume

e Example: first convolutional layer for an image
> Input: image width (32) x image height (32) x RGB colors (3)
> OQutput: image width (32) x image height (32) x feature map (5)
» Convolution performed w.r.t. first two dimensions (next slide)
> E.g., for 7 x 7 convolution: layer parameterized by 5 kernel tensors
Ki,...,. K5 € R7x7x3

S

000

29/56

Convolutional layers (details)

® In general, we have F' > 1 input channels
» Use a different kernel for each feature map and sum up
(observe: no “sliding” across feature dimension)
> E.g., for a 2D grid

F
tl,tg Z Z Z t1+7’1,t2+7'2)/€f(7'1,7'2)
2

f=1m1=—W; o=—W.

® Entire operation be represented by a kernel tensor
> E.g., 7 x 7 convolution with F' = 3 features
» 3 kernel matrices, one per feature: K,..., K3 € R™7
» Or 1 kernel tensor: IC € R7*7%3

® For O > 1 output channels, repeat O times with different
convolutions
» E.g., 5 output channels
> Use 5 kernel tensors ICq, ... JCs € R7*7x3
» Or one of shape R7*7x3x5

® This is the operation of convolutional layers in CNNs
» Here: 7-7-3-5 =735 parameters

30/56

Discussion

® In convolutional layer, the kernel values are parameters
— learned

® We can think of the kernel as feature detector
» Feature = inner product of input and kernel
(vectorized and shifted appropriately)
» Kernel is learned — learned feature detector
» May use our standard interpretations of inner product
> E.g., interpret feature as: Is the input similar to the kernel?

® |n part-based view, convolution corresponds to contextualization
» Input: part embeddings
» Qutput: contextualized part embeddings via convolutional layer
» Observe: contextualized part embeddings depends on nearby part
embeddings only (within kernel size)
» Observe: contextualized part embeddings represent nearby grid
points as well

¢ In CNNs, convolutions are followed by a nonlinearity (e.g., ReLU)
> Often part of convolutional layers

» In our part-based model, corresponds to local compute
31/56

Translation equivariance

The convolution operation is translation equivariant.

® Means: translated input — translated output

convolution ()
(with arbitrary kernel)

ér‘t :
translation l l translation

7 —@—

convolution

Weiler (2023) 32/56

https://maurice-weiler.gitlab.io/blog_post/cnn-book_2_conventional_cnns/

Inductive bias: stationarity

® (One) inductive bias of convolution — stationary data
» Means: distribution of values in a particular region is independent
of where the region is located along the grid

® That's reflected in the feature detector of a convolutional layer
» Due to the translation equivariance property, feature detection is
also independent of location
> |.e., we detect features independent of where they are

® E.g., in object detection, we want to detect an object irrespective
of its absolute position

33/56

Outline

4. 1 x 1 convolutions

34/56

Local compute in CNNs

Local compute operations usually done as follows:

1. Use a non-linearity (as discussed)

2. Use a linear layer

>
>
>

A\

Input: D-dimensional part representation p,, € R”
Output: updated C-dimensional part representation p,,, € R”
Via a linear layer (applied to each grid point / part)

T
Pout = w Dins

where W € RP*C is the weight matrix

C < D — decreased embedding size

C > D — increased embedding size

For 2D grids, equivalent to a 1 x 1-convolution with weights W
(used as kernel)

Often: term 1 x 1-convolution used for grids of other dimensionality
as well (instead of, say, 1 x 1 x 1 convolution for a 3D grid)

3. Perform feature pooling (more later)

35/56

*Depth-wise separable convolution

® Depth-wise separable convolution layers exploit that
translation equivariance is not needed across channels
1. Depth-wise convolution: take in input volume, produce an
intermediate output volume, where each channel of the
intermediate output volume is computed from exactly one channel
of the input volume (H channels in — H channels out)
2. Apply a 1 x 1 convolution

® Example from sl. 29: first convolutional layer for an image
> Input: image width (32) x image height (32) x RGB colors (3)
» Output: image width (32) x image height (32) x feature map (5)
» E.g., for d7 x 7 convolution: layer parameterized by 3 kernel
matrices K1,..., K3 € R7*7 plus “weight matrix’ W € R3*x?
» This reduces the amount of model parameters significantly

B 7X7—7-7-3-5=7T35 parameters
md7x7—7-7-343-5= 162 parameters

e Used in many recent architectures (e.g. ConvNext; also:
MobileNet, EfficientNet)

36 /56

https://arxiv.org/abs/2201.03545
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1905.11946

*2D convolution vs. depth-wise convolution

2D convolution Depth-wise convolution

For depth-wise separable convolution, add 1 x 1 convolution to

depth-wise convolution (not shown here).
Pandley (2018) 37/56

https://medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable-convolution-37346565d4ec

Outline

5. Pooling

38/56

Spatial pooling

Convolutional layers periodically followed by pooling operations.
1. Drop parts

> E.g., in 1D grid, keep only every k-th part (and drop others)
» Corresponds to a convolution operation with stride k
(equivalent, but more efficient)
» Stride = steps in which to slide kernel
(set separately for each grid dimension)

2. Use pooling layers (next slide)
Both operations decrease spatial resolution.
® |.e., grid size reduced

e E.g., 32 x 32, then conv. layer with stride 2 x 2 — 16 x 16

® Resulting parts then represent regions
(here: 2 x 2 regions)

39/56

Pooling layers

* Pooling layers
» Like a convolution, but hard-coded, possibly non-linear operation
(e.g., max pooling, avg pooling)
> Groups together (“pools”) the values in a region
> Reduces size: e.g., stride = no. pooled values (per dimension)
» Sometimes referred to as subsampling

¢ Can be performed along spatial dimension and/or feature
dimensions

e Example: spatial max-pooling

224x224x64 . -
112x112x64 Single depth slice
’ max pool with 2x2 filters
5 6|78 and stride 2 6|8
: | 12 . 3[4
12|34
24 downsampling 1le
12 -
224 7

40/56

Invariance

e Translation invariance

» Means: translated input — same output
> Desired in tasks such as image classification

> E.g., whether or not an image contains a flower (=class) does not

depend on the location of the flower

® Spatial pooling operations increase translation invariance
(slightly) — inductive bias

224x224x64

112x112x64
pool I/"’

U

o 112
224 downsampling
12

224

>

Single depth slice

111124
max pool with 2x2 filters
5(6|7]|8 and stride 2
312|110
112 (3|4
y

o Likewise, feature pooling increases feature invariance

41/56

Outline

6. CNNs

42 /56

Example 1: LeNet5

e LeNet5 is a well-known early architecture (1998)
e Used for digit/letter classification

C3: f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28

32x32 $2: f. maps

6@14x1

|
Full conr#ection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

® (Scaled) tanh units almost everywhere
® Subsampling = 2 x 2 average pooling with stride 2

e QOutput computes distance to manually-crafted image (one per
class) — radial basis function (RBF)

43 /56

http://yann.lecun.com/exdb/lenet/

Receptive fields

® Each feature in a CNN has a receptive field
> |.e., the set of inputs that influence this feature
» Increases via convolution or pooling operations
» Thus: higher-level layers have larger receptive field and tend to
provide higher-level features (e.g., edges, then parts, then objects)
» Important design consideration: e.g., to detect an object of a
certain size, want receptive field of that size

e Example: receptive field after two convolutions of width 3

O§O¥O.
a%c)
ONORONONO
e Effective receptive field often smaller and focused on center
region

44 /56

https://arxiv.org/pdf/1701.04128.pdf

Example 2: AlexNet by Krizhevsky et al. (NeurlPS, 2012)

o AlexNet is the "first recent" architecture (2012)
» Some history (ZDNET)

® Used for image classification, but adapted to many tasks (e.g.
object detection)

1000
Dense

128 L
MaX o043 2008
Pooling

o dss |
5
5|

Max Max
48 Pooling Pooling

Local Response Local Response
Normalization Normalization

® RelU activations
® Subsampling using max pooling
® Prediction using softmax layer, trained via cross entropy loss

45 /56

https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://www.zdnet.com/article/alexnet-the-ai-model-that-started-it-all-released-in-source-code-form-for-all-to-download/

What is learned in AlexNet? (1)

Layer 1, initialization (100 iterations)

46 /56

What is learned in AlexNet? (2)

| Ji’lD ﬁ!&ll

15‘""*‘.’#LIU5 -

MO ™N "al!fi:[.]
= NESEE PSS

ilmrrlﬂwwl

Layer 1, 1000 iterations

47 /56

What is learned in AlexNet? (3)

Elephants
| Il.

\
ull i ln b
- .

A fa s

|
!} &

sl =B

AN ASNNEFE
NEREC S NEREC S
“AIZANN Z2IIANN

=IIENmS S

Composition of features? Low-level features, parts, objects, ...7

48 /56

Example: Outputs of a CNN

j\orse

111

RELU RELU| RELU RELU| RELU RELU
CONVlCONVl cowloowl CONVlCONVi o
= } -
Bl | | [GaF
= -. = | | [k
= = i “HE—u
— — b - a|rp|ane
1 1 I = 8hip
B = =
B (|- . [

Web demo

49 /56

http://cs231n.stanford.edu/

Example features: edges, parts, objects (1)

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Zeiler and Fergus, 2013 50 /56

https://arxiv.org/abs/1311.2901

Example features: edges, parts, objects (2)

T

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

Zeiler and Fergus, 2013 51/56

https://arxiv.org/abs/1311.2901

Example features: edges, parts, objects (3)

Zeiler and Fergus, 2013

https://arxiv.org/abs/1311.2901

CNNs for image classification (1)

Revolution of Depth 22
A\
\\‘\ 16.4
\[22 Iayers 19 Iayers
3.57

shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

He et al.. 2016 53 /56

http://kaiminghe.com/cvpr16resnet/cvpr2016_deep_residual_learning_kaiminghe.pdf

CNNs for image classification (2)

® Increase in depth possible due to suitable architectures

> Avoid that adding depth leads to vanishing/exploding gradients or
makes learning harder (e.g., residual units)

> Avoid too-strong increase in memory consumption (e.g., separable
convolutions and small filters)

Not just depth, but also resolution and width important

¢ Data augmentation (e.g., crop, rotate, flip, ...) important

® Pretraining—e.g., on ImageNet—to handle lack of training data
for particular task
» Pretrained models available; e.g., GluonCV

Much more in CS 646 Computer Vision (HWS)

> E.g., in-depth discussion of architectures, tasks other than image
classification, and training CNNs in computer vision

54 /56

https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/abs/1712.04621
http://www.image-net.org/
https://gluon-cv.mxnet.io/model_zoo/index.html

Example: Microsoft's ResNet

Example architectures for ImageNet's image classification task

34-layer residual

34-layer plain

podl, /2

VGG-19

autput

® ResNet (scaled to various depths) and some follow up models
(ResNeXt, DenseNet) have defined the SotA for several years.

fca096

output

55 /56

https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/1608.06993

SotA in image classification

® Many Transformer-based methods have been proposed
(more later)

e ConvNeXt and other recent CNNs keep up
> Distant relationships modeled in deep layers
» Translation equivariance, but larger filters
(possible through depthwise separable conv.)
» Benefits with reasonable amounts of training data
» Borrows ideas from Transformer architecture

ImageNet-1K Acc.
90
ConvNeXt Block

88

ConvNeXt
Swin Transformer

86

(2021) ConvNeXt

84 Swin Transformer

Rl DeiT ViT (2021)

202

(2015) (2020) (2020)
82 . []
80 35 GFLOPs

[]

ImageNet-1K Trained ImageNet-22K Pre-trained 56 /56

https://arxiv.org/abs/2201.03545

Deep Learning

07 — Recurrent Neural Networks
and Structured State Space Models

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-4

Outline

1. Sequence models

2/67

Sequential data

® Sequence models operate on sequential data

e Sequential data = data with meaningful order

>

VVYVYYVYY

Time series data (e.g., sequences of sensor readings)

Natural language text (e.g., sequences of characters / tokens)
Audio signals (e.g., sequences of amplitudes)

Images (e.g., sequences of pixels/rows/columns)

Videos (e.g., sequences of frames)

Processes (e.g., sequences of actions)

> ...

e Data that is not naturally sequential is sometimes “sequentialized”

>
| 4
>

E.g., a set as a sequence of its elements

E.g., a graph as a sequence of its vertices and edges
Beware: sequence models are generally not order-invariant
— At the very least, careful sequentialization required

3/67

Sequential data and part-based models

® Part-based view of sequential data (cf. lecture 05)
> time steps (& positions) correspond to parts
> Features correspond to part representations/embeddings
» Parts and their representations represented in a sequence

e Example: 1 feature (e.g., time series)

L]
400 - °
L]

L]

L]

200 A)

N
0 b T T T T T T T T T
0 20 40 60 80 100 120 140 160

> Time dimension, 1 feature (altitude)

> time steps correspond to parts (minute intervals; ca. 150)
> Features correspond to part representation (1 per part)

> Both together form a real-number sequence of length 150

e Example: 3 features (e.g., multivariate time series)
> Suppose we had three features (altitude, latitude, longitude)

» Then each part represented by 3 values — seq. of 150 vectors € R3 \er

Sequential data, formally

® |nputs sequence & € X*
» A sequence V) @ .. &™) of length 7
» 2(1) ¢ X is input at time step t € Nt
> Length 7 may differ for different inputs
e Qutput sequence y € V*
» A sequence y(M), y@) . y(Tw) of elements from)
» 7,,t May or may not depend on input x
» 7o, may be deterministic or random (for fixed input)
e Examples from NLP domain, where « is a text document
Tout | iIndependent of x dependent on x
deterministic | Text classification POS tagging
random | Language modeling Translation

® Examples from time series domain, where x is a time series

Tout | INdependent of x dependent on x

deterministic | TS classification ~ Anomaly detection
random | Sequence modeling Forecasting

5/67

Types of sequence models

¢ Encoder-only models compute useful representations/embeddings

> E.g., BERT for text data

xr e X" —~

Encoder

Prediction

— » E
head yey

® Encoder-decoder models add a decoder to generate sequences
> E.g., T5 for sequence-to-sequence models

xr e Xt —

Encoder

z

Decoder |—yeYV*

¢ Decoder-only models drop the encoder (and use decoder instead)
> E.g., GPT-1/2/3/4 for language modelling

xr e X" —

Decoder

— y e X"

e Key approaches: CNNs (cf. 06), RNNs (now), Transformers (cf. 08)

6/67

https://arxiv.org/pdf/1810.04805v2.pdf
https://arxiv.org/abs/1910.10683
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2303.08774.pdf

Outline

2. RNN encoders

7/67

RNNs at a glance (1)

® Recurrent neural networks (RNN) are a family of neural
networks for processing sequential data

> Also applicable to other data modalities (e.g., grid data)
— Not discussed here
e Key ingredients
> Part-based modeling (cf. lecture 05)
> Template modeling
> Parameter sharing (across time steps)
® Example tasks

> Part-based tasks (e.g., POS tagging, anomaly detection)
> Global tasks (e.g., sequence classification)
> Also: intermediates (e.g., forecasting)

¢ Simple & relevant (e.g., SOTA for long sequence modelling)

8/67

https://arxiv.org/abs/2303.06349

RNNs at a glance (2)

¢ Recall: Three key operations of part-based models (cf. lecture 05)
1. Contextualization: incorporate information from other parts into
each part embedding
2. Local compute: update each part embedding individually
3. Pooling: aggregate multiple (or all) part embeddings

e Contextualization operation: recurrence

» Computes contextualized part embeddings
» Does this by passing information “sideways”’ between parts via a
recurrence

® |ocal compute: typically one of

> Just an activation function (rare; often part of contextualization)
» Rescaling (common; often part of contextualization)
> MLP (modern RNNs; often separate)

® Pooling operation
» Pooling rare, except readout

> Readout: certain part embeddings (first/last part)
> Readout: pooling (e.g., sum pooling)

9/67

Example RNN

’ Local compute (using ReLU) ‘

| | | | | |
0 {T 1, = 1HT 4, > 5HT 5, — 10HT —6, - 4HT 2, 6HT 2, 8‘
T

|

’ Contextualization (using recurrence (Vf> (1 ‘) (2)
Lo e JLe JLs]

%) \1 0 241
IE R
Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

Example task: Sequence labeling

¢ In sequence labeling tasks, we assign a label to each input
(Tout = 7)

e Example: part-of-speech tagging
t 1 2 3 4 5
y| DT NN VBD DT NN

x | The dog ate the cake

® How to solve this task with neural networks?

11/67

Fully-connected FNN (1)

How to read this architecture
® Each vertex corresponds to a subnetwork

e Each edge indicates directed connections between corresponding
subnetworks

> Between output neurons and input neurons
» Not necessarily fully connected

® QOther architecture details abstracted away

12/67

Fully-connected FNN (2)

® For example,

> Input vertex z(*) corresponds to D = 200-dimensional embedding
layer (= subnetwork)

» Hidden vertex z() corresponds to Z = 50 sigmoid units
(subnetwork = 50 units, no connections in between)

» Output vectex y*) corresponds to C' = 36-dimensional softmax
layer (= subnetwork)

» Fully connected: when A — B, then connection from each unit
a € A to each unitb e B

13/67

Why not use an MLP?

® Sequence length 7,e¢ hard-coded
» Cannot handle input sequences of length 7 > 7,,¢ directly
> Shorter sequences can be supported (at least in principle) by
padding with a special “empty” input to length 7
® Many parameters; e.g., for our example
» Input embedding layers: 7,,:V D parameters (e.g., 5 - 100k - 200 = 100M)
» Hidden layers: 1t DZ (e.g., 5-200 - 50 = 50k)
> Output layers: 7eZC (e.g., 5-50 - 36 = 9k)

No information sharing between time steps

> Network needs to learn that “the” is likely to be a determiner for
each time step separately

For probabilistic models: outputs cond. independent given z

» Cannot express, for example, that two outputs must agree
(e.g., 00 with 50% probability, 11 with 50% probability)

RNNs can address all of these problems

14 /67

A simple RNN

Unfolded RNN

® RNNs are template models
> Network is constructed by repeating the same template for every
time step — called unfolding
» Parameters are shared across time steps
® Template is important architecture decision; e.g., here:

» Qutputs only depend on their corresponding word
— context ignored

15/67

Unidirectional RNN

Unfolded RNN

® Templates usually include connections between time steps

® In a unidirectional RNN, connections between time steps go
from left to right
> Network can pass along information to subsequent time steps
> 2()’'s commonly referred to as hidden states

® For example, at t = 2
» 2() computed from input (2 (“dog”)
» And from hidden representation z(!)
» Useful information to pass along via 2(1), for example: “word at

time step 1 was likely to be a determiner”

16 /67

Discussion (1)

® Network is recurrent
» E.g., a recurrence of form 2" « f(xy, 2z, 1,9,)
B x. is input connection
m z;_; is hidden-to-hidden connection
B y,_, is output-to-hidden connection
» Can be done “infinitely” often
> May also access ¢;_, z;— and/or y,_, for k >0

e Unfolded network is deep in time
> Even when template is shallow

® Hidden state representation serves two purposes
1. Prediction: provide good features to output layer
(at current time step)
2. Memory: provide useful information to subsequent time step(s)
(e.g., previous word was likely a determiner)

e Suitable representations not prespecified, but learned

® “Multi-purpose” representations are common
> E.g., z in hierarchical softmax served multiple purposes: determines

probability distribution at each vertex in decision tree
17/67

Discussion (2)

® When only hidden-to-hidden connections used: outputs cond.
independent given hidden layer
> Fixed by adding output-to-hidden/output connections (more later)

® Parameter sharing — inductive bias: position independence
P> Same operation but different “data” at each position
> Selection of useful input features does not depend on position
> Selection of useful information to pass along does not depend on pos.

RNNs are universal (can simulate any Turing machine)

Can be slow as computation cannot be parallelized over time
> Since operation at time step ¢ needs input from time step t — 1

® Advantage: for inference, unrolling not necessary
» Process time steps incrementally
» Only keep information from previous time step

Advantage: real-time prediction possible (e.g., for data streams)
» Can output ¥ as soon as we see x(*)

Disadvantage: data in subsequent time steps ignored
(e.g., for NER: “Green Mile is a movie." vs. “Green is a color.”) ., .,

http://binds.cs.umass.edu/papers/1992_Siegelmann_COLT.pdf

Bidirectional RNN

RNN Unfolded RNN

-
(t+1)

e Bidirectional RNNs also have backwards connections
» Information about “past” and “future” captured in hidden units
» Every output depends on every input — better predictions

® Main drawbacks

» No real-time predictions
» More resource-intensive during prediction

19/67

Outline

3. Catastrophic forgetting

20/67

RNNs and vanishing gradients (1)

Outputs

Hidden
Layer

Inputs

Time 1 2 3 4 5 6 7

Figure 4.1: The vanishing gradient problem for RINNs. The shading of
the nodes in the unfolded network indicates their sensitivity to the inputs at
time one (the darker the shade, the greater the sensitivity). The sensitivity
decays over time as new inputs overwrite the activations of the hidden layer,
and the network ‘forgets’ the first inputs.

Graves, 2014

21/67

https://www.cs.toronto.edu/~graves/preprint.pdf

RNNs and vanishing gradients (2)

® Recall vanishing gradient problem
» Gradient decreases quickly with distance from output

® RNNs are deep in time, thus translates to:
> Gradient of past input (") w.r.t. to current output y® quickly
decreases over time (t — tpast)
» |.e., network becomes insensitive to changes in past input
> |.e., it “forgets’ past input = catastrophic forgetting

® Why is this a problem?
> Intuitively: network has difficulties when predictions depend on
inputs seen in the far past
® Two common approaches

» Use gating mechanisms in hidden layers to mitigate this effect
(e.g., LSTM, GRU)

> Let the network directly access past information via attention
(cf. lecture 08)

» Also: do both

22/67

Why not use residual connections?

Plain RNN RNN w/ residual connection

e Simple “solution”: add a residual connection (e.g., as above)
® Not suitable for RNNs
b 20 = 20D L = 2072 L) gy = = 50 4 g0
> At time ¢, u® has same “contribution” as uw(*=1), w(*=2)
— Not time-dependent
® |nstead, we'd like to
» Capture short-range dependencies (more recent — more contribution)
> Capture long-range dependencies (far away — large contribution)
» Need trade-off — gating mechanisms

» How to trade-off? — learned 23 /67

Gating mechanisms

Key idea: use “gates”’ to control whether or not new information is
allowed to override hidden state

“TTTYTYY

— — — o) — o —

Hidden

5 @@ @-@--@-@- O
o - - - - - O

- 900000¢

Figure 4.4: Preservation of gradient information by LSTM. As in Fig-
ure 4.1 the shading of the nodes indicates their sensitivity to the inputs at time
one; in this case the black nodes are maximally sensitive and the white nodes
are entirely insensitive. The state of the input, forget, and output gates are
displayed below, to the left and above the hidden layer respectively. For sim-
Graves, 201plicity, all gates are either entirely open (‘O’) or closed (“—’). The memory cell 24/67

https://www.cs.toronto.edu/~graves/preprint.pdf

A simple gate

Y

o(W'x + b)j
wnew

® Input: € RP

Filter o € [0, 1]"
> Computed from x (here: via logistic units)
» Think: o) = Percentage of zj to retain

> Learned (here: via W,b)
Output: " € RP is “gated” input

» Since 2} = xy - 0%
> Gate is “open” when o, =1 — 27"
> Gate is “closed” when o, =0 — 27V =0

:xk

Used in RNNs, but also other architectures

25 /67

Long short term memory (LSTM)
LSTMs are a (sub)architecture for the hidden layer of an RNN.

5 ()
A
~
c(tfl) _> X \+J ’ c(t)
G
®)
(o]
(t=1) (t)
z -» > =z
J
z®
1 0 — > I
Neur etk Foittuse - Vectw concatenate Copy

Olah, 2015 26 /67

https://www.researchgate.net/publication/13853244_Long_Short-term_Memory
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Key ideas

e A D-dimensional LSTM unit (or LSTM cell) has
> A cell state ¢ € R” = “memory”
» A hidden state z € [-1,1]P = “output”
® Three gates control how states are updated at each time step

» Forget gate controls to what extent cell state is retained
» Input gate controls to what extent cell state is updated
» Qutput gate controls outputs

e All gates are controlled by the unit's states
» Again, hidden representations serve multiple purposes

e Carefully designed such that gradient information can flow
backwards

> Cell state updated, but not replaced/recomputed

» Effective weight of input z(*) = product of forget gate
activations f{=+1) o ... £ to output y®

> Gradient cannot explode, but can be kept high (when F ~ 1)

» More in exercise

27 /67

Forget gate

® Forget gate controls to what extent state is kept =
F9e0,1”
> When f,gt) =1, gate is open
— element ¢, not modified (history kept)
» When f,gt) = 0, gate is closed
— element ¢, zeroed out (history forgotten)

e Decision made based on input z(*)

and hidden state z(t=1)
t—1)

2(
- U(wif (©) +bf)

> Weights learned
during training = 5

1) 28/67

Input gate

® |nput gate decides to what extent state is updated
> Proposed update: ¢® e [~1,1]P
> Extent by which to update: i® € [0, 1]°
» For both: weights learned during training
° Example updates
f =)—O—>o|dva|ue
f Y=o, zkt) =1 — new value
f D=1, zkt) =1 — update value
> f D —o, zkt) =0 — clear value

c(t_l) _>

29 /67

Output gate

® Qutput gate decides to what to output
» Output = filtered version of new cell state = new hidden state
> Cell state pushed into [—1, 1] via tanh function
> Extent by which to filter: o) € [0,1]P

® Variants (— exercise)
» Peephole connections: gate layers (sigmoids) take cell state as
additional input
» Coupled input/forget gates: take i =1- f(t)
> Gated recurrent units (GRU):
additionally combine cell state
and hidden state

20
A

\

> c(t)

(pushes filtering to =)

. . X +
obtain hl'dden state (@D
to next time step) ® %X
[0] [0]
z(t_l) _t

z®

> ()

30/ 67

Using RNN encoders

® So far, we have focused on RNN encoders

® Provide contextualized representations z(® for each input z®
» Contextualized since z(*) depends on surrounding inputs
> As discussed: Useful for element-level tasks (e.g., sequence labeling)
® Provide fixed-dimensional sequence representation known as
thought vector

> Obtained via a form of readout

» For uni-directional RNNs: last state z(7)

» For bi-directional RNNs: additionally first state s*) in backward
direction

> As discussed: useful for sequence-level tasks (e.g., sequence
classification)

® Coming up: RNN decoders
> Example of a deep autoregressive model

31/67

Outline

4. Deep Autoregressive Models

32/67

Excursion: Deep generative models

¢ Generative model = distribution p(y) for y € Y
» Examples from ML course: beta-binomial model, Naive Bayes,
factor analysis & probabilistic PCA, Gaussian mixture model

¢ Conditional generative model = conditional distribution p(y|c)
> May think of ¢ € C as an input / condition / prompt / context
> And of p(y|c) as the corresponding output
> In contrast to discriminative models, usually multiple “correct” (and
often structured) outputs

e Deep generative models use deep neural networks to define a
generative model for complex data distributions (e.g., text, audio,
image, graph, ...)

® Tasks of interest include
1. Train a generative model p(y) from samples of data distribution pp(y)
2. Sample from p(y)
3. Determine the top-k highest-probability outputs
4. Given y, compute density p(y)
5. Sometimes: obtain latent codes z for a given data point y

(each optionally conditioned on ¢) e

Sampling from DGMs (1)

By sampling, we create “new” data. Goals are:
e High quality. samples are part of data distribution
e High diversity: all modes of data distribution captured

® Generalization: samples generalize beyond training data

Left: sample, rlght lst/2nd/3rd/4th nearest nelghbor in training data

3467

Sampling from DGMs (2)

Image generation (GAN, DCGAN, CoupledGAN, ProgressiveGAN, StyleGAN)

Text generation (GPT-1/2/3/4)

PROMPT:

In a shocking finding, scientist discovered a herd of unicorns living in a remote,
previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

RESPONSE:

The scientist named the population, after their distinctive horn, Ovid’s Unicorn.

These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon

is finally solved. Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz,

and several companions, were exploring the Andes Mountains when they found a small valley,
with no other animals or humans....

35/67

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1606.07536
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1812.04948
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2303.08774.pdf

Sampling from DGMs (3)

Conditional generative models can be used for A-to-B problems,
where A, B € { text, speech, image, graph, ... }.

image-to-image (cGAN)

Labels to Street Scene Labels to Facade BW to Color

input output
Day to Night

output B output output

36 /67

https://arxiv.org/abs/1611.07004

Sampling from DGMs (4)

text-to-image (DALL-E 1/2)
W;

(a) an armchair in the shape of an avo- (b) an illustration of a baby hedgehog in
cado. a christmas sweater walking a dog

text-to-text, few shot learning (GPT-3)

]

A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses
the word whatpu is:
We were traveling in Africa and we saw these very cute whatpus.

To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses
the word farduddle is:

One day when I was playing tag with my little sister, she got really excited and she
started doing these crazy farduddles.

A "yalubalu" is a type of vegetable that looks like a big pumpkin. An example of a sentence
that uses the word yalubalu is:

I vas on a trip to Africa and I tried this yalubalu vegetable that was grown in a garden
there. It was delicious. 37/67

https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2204.06125
https://arxiv.org/pdf/2005.14165.pdf

DGMs can also be used for. ..

® Density estimation
Outlier detection

» Data compression

> Generative classifiers
» Model comparison

v

® Imputation to fill in missing values

e Structure discovery (via latent variable z)

® Representation learning (via latent variable z)
® Interpolation between data points

® Training data generation

® Few-shot learners

® For CV, see related course: CS 668 Generative Computer Vision

Models (FSS)

38/67

Generating sequences

e So far, we focused on RNNs encoders
> E.g., to obtain fixed-dimensional element representation
(contextualized representation)
> E.g., to obtain fixed-dimensional sequence representation (thought

vector)

® We now look at deep generative models for sequence data. ..
> Distribution p(y) € Y* over sequences of elements from)
> Example: Language model, where) is a discrete set of characters

/ tokens / words
» Example: Time series model, where) = R (univariate) or Y = RP

(multivariate)
> Special case: (probabilistic) RNN decoder
e . .and then at conditional generative models
» Special cases: encoder-decoder RNN, decoder-only RNN

e \We focus on plain RNNs throughout
» But discussion also applies to other sequence models such as RNNs
with attention or Transformer models (cf. lecture 08)

39/67

Autoregressive generative models

e To keep notation uncluttered, we write y; for y®) etc.

® Autoregressive generative models decompose the joint

distribution into next-element distributions using the product
rule

p(yliT) = p(y) (y2|y1) (y3|y1 y2) ce

next element past elements

—~
—Hp T)

next element dlstrlbutlon Pt (ye)

» Can be done for any distribution

> E.g., for categorical outputs, p:(y) = categorical distribution

> E.g., for real-valued outputs, p;(y) = continuous distribution
(e.g., normal distribution)

Autoregressive J;» L
model: Learn
con_dmona_l of each 0 x1 2 3 D
variable given past I

4h / 67

Next-element distributions

def
* Recall: pi(y) = pylyr—1)
> Convention: y for random variable, y; for concrete sample

® Example: categorical data
» (categories — can represent p;(y) with probability vector p, € S¢
> Deep autoregressive models compute p, from past outputs y1..—1
(e.g., via a deep network + softmax layer)
> Example: Categories { red, green,blue } (C' = 3)
» p,= (0.8 0.05 0.15)
> Samples: red (with prob. 80%), green (5%), or blue (15%)

® Example: real-valued data, normal distribution
> p.(y) has form N (y; s, 02)
» Deep autoregressive models compute z; and o2 from past outputs
(e.g., via a deep network + linear layer)
> Example: s =5, 07 =2
» Samples: 5.337371, 3.874985, 6.089283, ...

® Generally, at each time step
1. Determine (parameters of) p; via deep model
2. Sample from p,

41/67

Sampling from autoregressive generative models

® To generate, forward sample iteratively from p.(y) = p(y|y1:4—1)

1. Generate y; by sampling from p;(y) = p(y) The
2. Generate yo by sampling from p2(y) = p(y|y1) dog
3. Generate y3 by sampling from ps(y) = p(y|y1.2) ate
4. Generate y4 by sampling from p4(y) = p(yly1.3) the
5. Generate y5 by sampling from p5(y) = p(y|y1.4) cake
6. ...

® Sampling process can continue endlessly
> |.e., infinitely long sequences can be generated
» To handle finite sequences of different lengths, a special
end-of-sequence (EOS) marker can be used to stop generation
> E.g., end-of-sequence token used in language models: stop
generation as soon as y; = EOS_TOKEN

® Finding top-k most likely outputs more involved

> E.g., most probable sequence may start with a low-probability
element — greedy methods don't work
» Common heuristic: beam search

42/67

https://en.wikipedia.org/wiki/Beam_search

Assumptions needed

® In principle, any distribution p(y) can be modeled
» But: next-element distributions become more and more complex
® Example: binary data, next-element distributions specified using
conditional probability tables

> pi(y) — 2 entries (p(y = 0) and p(y = 1))

> pa(y) — 4 entries (p(y = 0ly1 =0), ...)
> ..

> p(y|ly1.c—1) — 2° entries — exponential increase in parameters

® Need to make further assumptions to reduce complexity

¢ Example: Markov chain of order k (window size, context size)
» Makes Markov assumption

PWy1e—1) = PW|Yt—k:t—1) = PWr+1 = Y|Y1:k = Yt—rit—1)

» |.e., only look at k most recent outputs & use same distribution p
across time steps
> For example above, 2% parameters in total

43/67

Outline

5. RNN decoders

44 /67

Autoregressive modelling using an RNN (1)

® Can use an RNN to specify the next-element distribution p;(y)

» Must be unidirectional
— Autoregressive (cannot access future outputs)
» Qutputs y; must be stochastic
— Sampled from probability distribution p;(y)
» RNN must have output-to-hidden connections
— Else output y; cond. independent from 1., 1 given z;_1

® Example architecture of such an RNN decoder
RNN Unfolded RNN (5 steps)

pe(y) = p(Ylyr:e—1) = p(Ylye—1, Ze—1)

45 /67

Autoregressive modelling using an RNN (2)

® Generally: unidirectional, stochastic outputs, output-to-hidden

> Eg., z; = fo(zi—1,y:—1) and y; sampled from p;(y) def po(y|zt)

> Example (RNN): LSTM, then z; = (¢, hy)

> Example (discrete output): pg(y|2z:) obtained by sampling from
categorical distribution (with parameters p, = gg(2¢))

> Example (continuous output): pg(y|z:) obtained by sampling from
normal distribution (with parameters (u,, 3:) = go(z+))

e Computational cost at each time step constant
» In particular, does not increase over time

e Additional information can be provided and used

» E.g., for time series, may provide known “inputs” x; such as date,
weekday, time, ... at each time step (cf. slide 50)

» E.g., condition ¢ in conditional generative models

> E.g., attention to prior outputs (more later)

46 /67

Conditional deep autoregressive models

® Deep autoregressive models can also be used as conditional
generative models
> Recall: we model p(y|c), where ¢ can be seen as an “input”

® General approach: use input-dependent next-element distributions
of form

pe(y) = p(Yly1:e-1,¢)

e Key approaches

» Encoder-decoder models
» Decoder-only models

47/67

Encoder-decoder models

® Encoder-decoder models generally
» Use an encoder to compute representation z of input ¢
> Use z to condition the decoder, i.e., p:(y) = p(ye|y1.6—-1, 2)
> Generally, input and output may be of different types
(A-to-B models)
® Plain encoder-decoder RNNs do this by feeding thought vector
of encoder as the initial hidden state into the decoder
> Note: Encoder can be bi-directional
> Example: Google smart reply (from 2015)

ENCODER Reply
Yes, what's up? <END>
5| T P x
IS g
(6] il [0 %
3
| | f £ S SRS B B
Are you free tomorrow? <START>
Incoming Email DECODER
4867

Google Research Blog, 2015

http://googleresearch.blogspot.com/2015/11/computer-respond-to-this-email.html

Decoder-only models
® Decoder-only models condition on ¢ as a “prior output”

o = Plely)

> Here || means concatenation

» Think: Probability of outputting y after ¢ has already been
generated

» Input and output must be of same type

® Example: forecasting for a time series
» ¢ = observed past values
» o = future values
® Example: prompts in (large) language models
> ¢ = (Are, you, free, tomorrow?, END OF INPUT)
> y = (Yes, what's, up?)
> c|ly = (Are, you, free, tomorrow?, END OF INPUT, Yes, what's, up?)

49 /67

Example: DeepAR (Amazon)

® Probabilistic forecasting based on RNNs with stochastic units

® Focus: scenarios with many related time series
(energy consumption of individual households, demand of products)

e Allows to fit more complex models, little feature engineering

Training Prediction
Zit—1 Zit Zijt+1 samples it—1 Fiigs Zit+1
BB g]]
‘K(Zz,t—l‘ez,t—l)HZ(Zz,t‘ez,t)Hé<zz,t+l‘€z,t+l)‘ ‘ Zit— 1\9 1 1)Hf(z 1t]0s t)Hf(z +1]0i Hl)‘
network ‘hi,t—l }—>‘ hi }—>‘ hi i1 ‘ network ‘hi,t—l ‘*ﬂ h;; ‘*ﬁ hi i1 ‘
inputs Zi,t—2, Ti,t—1 | Zit—1,Tiyt Ziyty Tit+1 inputs Zi¢—2,Tit—1 | Zit—1,Tit Zit, Tijt4+1
Example

' M\./\ A | el

Flunkert et al., 2017 : 50/67

https://arxiv.org/abs/1704.04110

Example: RNNs for language modeling (1)

® [anguage model = distribution over sequences of
characters/tokens/words

> Can use RNN trained to predict next character/token/word

® Fun results with RNNs; e.g., write like Shakespeare:
Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when | perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

51/67

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Example: RNNs for language modeling (2)

Visualization of the activation of some particular hidden neuron in
each time step of a character-level language model.
Quotes neuron

Sentiment neuron

his is one of Crichton's best

the screenplay AND the directing were|
uld not fathom what was good about the|

The movie is just

Typical neuron
lter Pileld'sistring represgntation From user-space

p
ffe

. dit pack_string(Welid *Ebufp, size_|t| MrEmain, s@ize_jt| Lef)
n

t File Lds, PATHINAX

gth

b
r
ha

Radford et al., 2017; Karpathy, 2015 52 /67

https://blog.openai.com/unsupervised-sentiment-neuron/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Discussion

® Encoder-decoder models
» Input and output may be of different types
» Separate models for input and output
> Trained with suitable input/output examples

® Decoder-only models (also called: causal decoder-only)
» Input and output of same type
» Same model for input and output (both uni-directional)
» No need to decide on what is input and output during training

® [ntermediate: non-causal decoder-only models
» Input and output of same type
» Bi-directional on input, uni-directional on output
> Same model for input/output, but “future” connections on output “cut”
» Trained with suitable input/output examples

® When to use which? — depends. ..
» Encoder-decoder models when input/output types/dist. differ
» Decoder-only models natural for forecasting applications
> E.g., for NLP tasks, Wang et al. (2022): decoder-only had strong
zero-shot performance, but non-causal decoder-only models superior
with multi-task training data

53 /67

https://proceedings.mlr.press/v162/wang22u/wang22u.pdf

Training deep autoregressive models

® Parameters @ of deep autoregressive models can be learned from
training data

® For training example y*, we have
po(y”) = [[po(yi 1yt 1)
t
® Quantities pg(y;|y;.,_,) correspond to
> Probability that model generates correct element y; at position ¢
> Given that it generated all previous elements correctly
e E.g., for categorical data, may use ERM with log loss
—logpe(y™) = — > _logpe(y; |yi.—1)
t
> Observe: Model trained for next-element prediction
> Sometimes referred to as (full) language modelling objective
[]

This approach is called teacher forcing

> Errors in earlier time steps do not propagate (during training)

» Alternative: use [], po(y;|y1:t—1), where y1.,_1 are sampled model
outputs 54 /67

Training RNN decoders

For RNNs, we can compute pg(y*) for a given y* by omitting the

sampling step as follows:
RNN Unfolded RNN to compute p(y™)

cake

® Note: RNN decoders can also be non-probabilistic

» Direct prediction, no sampling step
» Then not a generative model, but produces a fixed sequence for

fixed inputs
> Generally only “useful” for conditional models and/or models with

inputs at each time step

55 /67

Outline

6. Linear Recurrences and SSMs

56 /67

Parallel processing

® GPUs and TPUs are often used for training/inference
> Have many “processors” that work (somewhat) independently
(10,000s per unit)
> Goal: use all these processors — high utilization — high efficiency

Local compute (e.g., MLP) in part-based models
» Computations for each part are independent
> Can be processed in parallel (e.g., one processor per part)

What about contextualization?

» In CNNs: easy to parallelize, as computations at each “kernel
position” are independent (e.g., one processor per position)

» In RNNs: hard to parallelize, as operation at time step ¢ needs
input from time step ¢t — 1 (e.g., z¢—1) — slow

Traditionally, one reason to avoid RNNs
> E.g., in favor of CNNs or Transformers

Can we do better?

» Yes, for encoders and when recurrences are linear

» Decoders: limited as output-to-hidden connections impose
sequential processing

57 /67

Linear recurrences (univariate case)

e Consider a linear recurrence of form

vVVvVYVYY

>

Zt = azi_1 + bxy

a,b,c,d € R are parameters
x¢ € R is part representation (original input/output of previous layer)
z; € R is hidden state — linear in z;_1 and

y; € R is contextualized part representation (output)
— linear in z;—1 and z; (equivalently: z; and)
Each computation takes time O(1)

Yt = cze—1 + dry

® Suppose initial state zy = 0; we then have

zZ1 = bl‘l

z9 = abx1 + bxo

23

2t

a’bzy + abxy + bxs

t t—k
2 k= @by,

y1 = dx1

y2 = cdxy + dxa

Y3
Yt

® We can parallelize this computation via

— very general method; in this lecture: variant for our setting

Adry + edry + dxs
2221 =k da,

a parallel scan

58 /67

https://arxiv.org/abs/1709.04057

Parallel scan (univariate case, algorithm)

Suppose we have P processors. Divide the sequence of length 7 into
P parts of length L = 7/P.
1. Run the original RNN on each part 1 < p < P to compute the

final hidden states 2%, i.e.:
L

27 = Z aL_kbmi where z} is k-th element of p-th part
k=1
2. Run the following linear RNN on these P final states to compute
starting states s, for each part 1 <p < P

51 =0 Spr1 = aLsp + 27

3. Run the original RNN again on each part, but this time starting
with initial state s, on each part p
> Part 1: s; =0 — state zg of original RNN
> Part 2: sy =2} = Zle a’~Fbx) — state zy, of original RNN
» Part 3: s3 =alzi +22 = iil a?l=kbgy — state zyp of original RNN
>

We thus obtain the outputs of the original RNN. -

Parallel scan (univariate case, discussion)

What did we gain?
1. Run the original RNN on each part
» Can be run in parallel for each part — time O(r/P)

2. Run a linear RNN to obtain starting states

» Need a” — time O(1)

> Naively: sequential in time O(P)

> Better (for large P): use another parallel scan to do this
3. Run the original RNN again on each part

» Can be run in parallel for each part — time O(7/P)

Discussion

® Can use different parameter a; € R instead of a at time step ¢
— (more) general parallel scan (used in practice in some models)

e Can show: overall O(7/P + log P) — essentially parallel

® Same approach to compute y;'s & for backprop

60 /67

https://arxiv.org/abs/1709.04057

Linear recurrences (multivariate case)

e Consider a linear recurrence of form

zy = Az 1+ Bxy Yy, =Czi_1 + Dz,

A,B.,C,D c RP*P are parameters

x; € RP is part representation (original input/output of previous layer)
z¢ € RP is hidden state — linear in z;_; and x

y, € RP is contextualized part representation (output)

— linear in z;_1 and x; (equivalently: z; and ;)

» Each computation takes time O(D?)

vVVvyVvyy

® Suppose initial state zg = 0; we then have

z1 = Bxy y, = Dz

z9 = ABx1 + Bxo Yy = CDx| + Dxo

z3 = A’Bx| + ABxzy + Bxs Ys = C?’Dxy + CDxy + Dxs
zt = Y4 A" By, Y = Yj—1 C" "Dy

® We can parallelize this computation via a parallel scan
— very general method; in this lecture: variant for our setting /6

https://arxiv.org/abs/1709.04057

Parallel scan (multivariate case, algorithm)

Suppose we have P processors. Divide the sequence of length 7 into

P parts of length L = 7/P.

1. Run the original RNN on each part 1 < p < P to compute the
final hidden states 2%, i.e.:

L
2l = ZAL_kBmZ where xf is k-th element of p-th part
k=1
2. Run the following linear RNN on these P final states to compute
starting states s, for each part 1 <p < P

s1=0 Spt1 = ALsp + 28

3. Run the original RNN again on each part, but this time starting
with initial state s, on each part p
> Part 1: s; = 0 — state zg of original RNN
> Part 2: s =21 = 2521 AL"*Bg,. — state zy, of original RNN
> Part 3: s3 = A"z} +22 = iil A*L=F By, — state zo;, of orig. RNI
>
We thus obtain the outputs of the original RNN. -

Parallel scan (multivariate case, discussion)

What did we gain?
1. Run the original RNN on each part
» Can be run in parallel for each part — time O(D?r/P)

2. Run a linear RNN to obtain starting states

> Need A® — time O(D?)

> Naively: sequential in time O(D?® + D?P)

> Better (for large P): use another parallel scan to do this
3. Run the original RNN again on each part

» Can be run in parallel for each part — time O(D?r/P)

Discussion
e Can use different parameter A; € RP*P instead of A at time step ¢
— (more) general parallel scan (used in practice in some models)

e Can show: overall O((D? + D?)(7/P +log P))
— For D > P, slower than sequential RNN (!)

® Same approach to compute y,'s & for backprop oo

https://arxiv.org/abs/1709.04057

Structured state space models

Problem is essentially the O(D3) cost of matrix multiplication

Can we improve? Yes, by imposing structure on A (and C)
> E.g.: A (and C) diagonal

> Matrix powers then have cost O(D) — problem solved

> But: less flexible in choice of A (and C) — tradeoff

Idea is at the heart of (deep) structured state space models (SSM)
(Discretized) state space model &~ hidden states + linear recurrences
Structured =~ restrictions on A (and C)

Network can be entirely linear. ..

...or introduce non-linearities in local compute parts (only)

May use Ay, By, Cy, and Dy “computed” from x; (e.g., Mamba)

°
\{

Think: modern RNNs

Total cost linear in sequence length & highly parallelizable
Empirically: very good performance in sequence modelling tasks,
esp. for very long sequences (up to millions of elements)
Empirically: parameter efficient

Many additional “tricks” (e.g., Centaurus, 2025)

>
>
>
>
Many deep SSM architectures exist
>
>
>

VY

64 /67

https://arxiv.org/abs/2312.00752
https://openreview.net/forum?id=PkpNRmBZ32

Example: Mamba, 2023 (building block)

N

—

—

SSM

®

Conv

\

Linear
projection

Sequence
transformation

Nonlinearity
(activation or
multiplication)

65 /67

https://arxiv.org/abs/2312.00752

Example: Mamba, 2023 (speech generation)

Table 4: (SC09) Automated metrics for unconditional generation on
a challenging dataset of fixed-length speech clips. (Top to Bottom)
Autoregressive baselines, non-autoregressive baselines, Mamba, and
dataset metrics.

MoDEL Params NLL| FID| IST MIST AM |
SampleRNN 35.0M 2.042 8.96 1.71 3.02 1.76
WaveNet 4.2M 1.925 5.08 2.27 5.80 1.47
SaShiMi 5.8M 1.873 1.99 5.13 42.57 0.74
WaveGAN 19.1M - 2.03 4.90 36.10 0.80
Diff Wave 24.1M - 1.92 5.26 51.21 0.68
+ SaShiMi 23.0M - 1.42 5.94 69.17 0.59
Mamba 6.1M 1.852 094 626 8854 0.52
Mamba 24.3M 1.860 0.67 7.33 144.9 0.36
Train - - 0.00 8.56 292.5 0.16
Test - - 0.02 8.33 257.6 0.19

66 /67

https://arxiv.org/abs/2312.00752

Example: Mamba, 2023 (language modelling)

Table 3: (Zero-shot Evaluations.) Best results for each size in bold. We compare against open source LMs with various tokenizers
trained for up to 300B tokens. Pile refers to the validation split, comparing only against models trained on the same dataset and tokenize:
(GPT-NeoX-20B). For each model size, Mamba is best-in-class on every single evaluation result, and generally matches baselines at twict

the model size.

MobEL TOKEN. PILE LAMBADA LAMBADA HerraSwac PIQA ARrRc-E ARc-C WINOGRANDE AVERAGE
ppL| PPL]| ace T accT acc] acel acc? acc T acc T
Hybrid H3-130M GPT2 — 89.48 25.77 317 64.2 44.4 24.2 50.6 40.1
Pythia-160M NeoX 29.64 38.10 33.0 30.2 61.4 432 241 519 40.6
Mamba-130M NeoX 10.56 16.07 443 35.3 64.5 48.0 243 51.9 44.7
Hybrid H3-360M GPT2 — 12.58 48.0 41.5 68.1 51.4 247 54.1 48.0
Pythia-410M NeoX 9.95 10.84 514 40.6 66.9 521 24.6 53.8 482
Mamba-370M NeoX 8.28 8.14 55.6 46.5 69.5 55.1 28.0 55.3 50.0
PylhiafIB NeoX 7.82 7.92 56.1 47.2 70.7 57.0 27.1 53.5 51.9
Mamba-790M NeoX 7.33 6.02 62.7 55.1 721 612 29.5 56.1 57.1
GPT-Neo 1.3B GPT2 - 7.50 572 489 71.1 56.2 25.9 54.9 52.4
Hybrid H3-1.3B GPT2 — 11.25 49.6 52.6 71.3 59.2 28.1 56.9 53.0
OPT-1.3B OPT - 6.64 58.0 537 724 56.7 29.6 59.5 55.0
Pythia-1.4B NeoX 7.51 6.08 61.7 52.1 71.0 60.5 28.5 57.2 55.2
RWKV-1.5B NeoX 7.70 7.04 56.4 525 724 60.5 294 54.6 54.3
Mamba-1.4B NeoX 6.80 5.04 64.9 59.1 74.2 65.5 32.8 61.5 59.7
GPT-Neo 2.7B GPT2 — 5.63 62.2 55.8 72.1 61.1 30.2 57.6 56.5
Hybrid H3-2.7B GPT2 - 7.92 55.7 59.7 733 65.6 323 61.4 58.0
OPT-2.7B OPT — 5.12 63.6 60.6 74.8 60.8 313 61.0 58.7
Pythia-2.8B NeoX 6.73 5.04 64.7 593 74.0 64.1 329 59.7 59.1
RWKV-3B NeoX 7.00 5.24 63.9 59.6 73.7 67.8 33.1 59.6 59.6
Mamba-2.8B NeoX 6.22 4.23 69.2 66.1 75.2 69.7 36.3 63.5 63.3
GPT-J-6B GPT2 - 4.10 68.3 66.3 75.4 67.0 36.6 64.1 63.0
OPT-6.7B OPT - 4.25 67.7 67.2 76.3 65.6 349 65.5 62.9
Pythia-6.9B NeoX 6.51 4.45 67.1 64.0 75.2 67.3 35.5 61.3 61.7
RWKV-7.4B NeoX 631 438 67.2 65.5 76.1 67.8 37.5 61.0 62.5

67 /67

https://arxiv.org/abs/2312.00752

Deep Learning

08 — Attention and Transformers

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-3

Outline

1. Attention

2/48

Recap: RNN encoder-decoder architecture

ENCODER Reply

8
=N @
b ¥ i
IENIERINFiIIERN N |IE% S|
3
| I ! ! £ B R s B B
Are you free tomorrow? <START>
Incoming Email DECODER

® Network first “reads” the input £ = encoding
» Encodes relevant information into a global representation, say, the
thought vector z

® Network then “generates”’ the output y = decoding
> Output (distribution of) y solely based on thought vector z
» Inputs x of encoder not accessed: output y cond. independent of
input & given thought vector z, i.e.,

py|z)=plyl=zz2)=py|=2)

e This is often too limiting!

Google Research Blog, 2015

3/48

http://googleresearch.blogspot.com/2015/11/computer-respond-to-this-email.html

Motivating example: The center-number task

e Consider the following center-number task
» Input: a sequence x1,...,x, of numbers, where 7 varies
> Desired output: z,/9, i.e., the number in the center position
> Eg, (4 2 3 5 1)—3
»Eg, (4 2351896 7)1

e Cannot be solved with a (unidirectional) encoder-decoder RNN
P> To enable perfect prediction, after reading ¢ numbers, thought
vector needs to encode the last ¢/2 numbers Tyj2, -0 Ty
> Why? Each of these integers may be a potential output
(e.g., xyyo for 7 =1t, a; for 7 = 2t)
» Generally impossible since thought vector has fixed dimensionality

® Task trivial if decoder could access the input again

» Thought vector then only needs to encode length 7 of input

» Decoder “computes” 7/2, then accesses and outputs input /5
» That's the key idea of RNNs with attention

> We say: the decoder attends to input x, /o

4/48

Attention

e Attention groups multiple inputs into a fixed-length representation

> Inputs are unordered (i.e., form a multiset)
» Number of inputs not fixed, but may vary
> E.g., 7 elements in R? to one value in R”

® Grouping is
> Simple, e.g., a weighted average
> Often focused on a small subset of the inputs
» Dynamic in that it depends on network state and values of inputs
> E.g., in the decoder of an RNN, relevant inputs (high attention
weights) for each output element may change over time (cf. sl. 6)
® Generally, a mechanism for network design; many variants

P> Can be used with RNNs, CNNs, standalone, ...
» Often, in a part-based model, the inputs to attention correspond to
the parts

® Our focus: attention for encoder-decoder RNNs (first),
self-attention/Transformers (afterwards)

5/48

Examples

Translation Image captioning
g €y
£ o E = A

o8 ,EBEg4,% 23 ¢

£ R fHi<zae32 .V

It

accord

sur

la

zone

économique

européenne

a

été c

signé A woman is throwing a frisbee in a park.
en
aolt

1992

<end>

Bahdanau and Cho, 2015; Xu et al., 2016 6/48

https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1502.03044.pdf

Why attention?

e Attention provides “access” to all inputs (soft memory)

» No fixed-length representations as in a pure encoder-decoder RNN
» l.e., longer inputs — larger representation

® Attention is dynamic and learned

> Different parts of input may be relevant for different output elements
— dynamic grouping

> Often hard to determine apriori which inputs are relevant
— learned grouping

Attention is general

> Arbitrary multiset inputs (not necessarily sequence or grid data)
» Positional information can be (and often needs to be) added:
{ (1, Positional), (2, information), (3, can), (4, be), (5, added) }

Attention is easy to parallelize

> A flat operation: network depth independent of input length
» Unlike RNNs (recall: in general, no parallelization over time possible)

e Component of state-of-the-art models across many domains

7/48

Associative memory

® Suppose we store the input set in associative memory
» Recall: associative memory stores keys and corresponding values
> E.g., processor cache: key = memory address, value = content of

memory cell
> E.g., for an RNN, key = time step, value = part
Key k£ Value v
1 The
2 dog
3 ate
4 the
5 cake

® We can then retrieve a value by for a given query
> E.g., processor cache: query = memory address
> E.g., query = 3 — output = ate
® Here we assigned to each input x; ...
» A key k; that describes input ¢
> A value v; that represents input 4
e .. .and then used
> A query ¢; to express what is considered relevant 8 /48

https://en.wikipedia.org/wiki/Content-addressable_memory

Attention as soft memory

e Attention can be viewed as a soft form of associative memory
> We use neural representations to represent keys, values, and query
> All these representations are learned
> Keys are learned descriptions of the input (instead of addresses)
> Values learned representations of the input elements

(instead of the elements themselves)
> A query is a learned description of the information need
(instead of an “address” or “time step")

® |let's represent input x1,...,2, and query as follows:
> Keys ki,..., k, € Rix
Values v1,...,v, € R
Query q € R«
Note: keys and values will be “computed” by some neural network

Note: Dimensionalities of query/keys (dx) and values (dy) may
differ

® How do we “answer” a query?
» Answer is a “grouping” of values vy, ..., v, € R%
» Typically: Answer ¢ € RV has same shape as a value

>
>
>
>

9/48

Attention over inputs (encoder-only model)

The general approach for attention in a part-based model is as

follows:
Attention }—’{ c ‘
rt t 1 ~
o) (o] (o) o] ool [o] [o]
.~
—]
| | | | |
’ PThel ‘ ’ Pdog2 ‘ ’ Pate3 ‘ ’ Pthe4 ‘ ’ Pcake5 ‘

Encoder computes keys, values, and global representation
Prediction head computes query from global representation
Attention is used to obtain an answer, called context vector

=

Final prediction obtained from global representation and context

vector
10/48

Attention

Let's fill in the details. To answer a query, we
1. Use an attention model a(q, k)

» Measures the “compatibility” of each input key k; to the query q
via attention score

€ = a’(qu kz)

to form an attention score vector e € R”
» Higher/lower score — more/less relevant
> E.g., dot product: a(q, k) = k'q
> E.g., small MLP: a(q, k) = fo(q, k)
2. Compute query-dependent attention weights o (of size 7)
» E.g., soft attention: o = S(e) € S, — weighted average
> E.g., hard attention: «; = 1 for largest score ¢;, else 0
> E.g., linear attention: a = e € R™ — weighted sum
3. Output a context vector ¢, obtained by weighting each value by
its attention weight

Cc= E ;U
7

11/48

Example (dot-product attention)

® E.g., key elements: noun or verb? / subject or object? / random

Input x; Key k; Value v;-r
The (0.1 0 2)
dog (5 4 3)
ate (4 0 -3)
the (=02 0 1)

cake (5 -3 —4)

e Queries for (i) nouns, (ii) verbs, (iii) subjects, (iv) bag of words

Query g” Scores e ! Weights o "
() (5 0 0 (05 25 —20 —1 25) (0 05 0 0 0.5)
(i) (-5 0 0) (—05 =25 20 1 —25) (001 0 0
(i) (5 4 0) (05 41 —20 —1 13) (010 0 0)
(iv) (0 0 0) (00 0 0 0) (0.2 02 02 02 0.2)

12/48

Attention over inputs (encoder-decoder model)

We can use attention over inputs also in a decoder.
e Now: Attention run once per output element

® At time step ¢, use query g, — different context vector ¢; at
each time step — dynamic

e Known as cross attention: one model (here: the decoder)
attends over the outputs of another model (here: the encoder)

Example: compute g, from hidden state z;

’ T TAttention f? time step } T }_,’c—t‘,,m
(B on)] [teawa)] [0,09)] [Gn00)] s, 05)
T T T T T

Encoder -
| | | | |

(] (o] o] (o] [o]
Part 1 Part 2 Part 3 Part 4 Part 5

13/48

Example (early architecture)

Architecture of Bahdanau and Cho (2015) for machine translation

® Uses k; = v; = (h_z,ﬁz) — hidden states of bidirect. RNN encoder
® Uses g, = z;—1 — hidden state of RNN decoder
® MLP as attention model

® Example weights shown on slide 6

Yer W
Decoder
i
Encoder h
<1h,
Bahdanau and Cho, 2015 Xr

14 /48

https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf

Discussion

e Attention allows RNN to focus on important parts of input

» More powerful in that available information is not limited by the
size of the hidden representation

> Access to input simplifies architecture and learning

> Exercise: write an RNN with attention for the central-number task

® In general, can attend to

» The prior encoder outputs in an RNN encoder

> The encoder outputs in an RNN decoder (cross-attention)
» The prior decoder outputs in an RNN decoder

» Or any combination of the above (individually or jointly)

® Many successful architectures and applications
P Part of many SOTA architectures for NLP, signal processing, vision,
neural programming
» E.g., content-based addressing in Neural Turing Machines
> E.g., self-attention instead of RNNs (coming up next)

15/48

https://arxiv.org/pdf/1410.5401.pdf

Outline

2. Transformer Encoders

16 /48

Attention is all you need

e So far, we discussed attention in the context of an RNN
» But is an RNN actually needed?
® Vaswani et al., NIPS 2017: Attention Is All You Need

> Introduced self-attention, multi-head attention, Transformers
Attention onIy: no recurrence, no convolution
Achieved SOTA results (at the time) on machine translation tasks
Achieved lower training costs than competitive prior models
Architecture facilitates parallel processing

>
>
>
>
Highly influential (>170k cites) & important part of toolbox today
> E.g., BERT for text representation
>
>
>
>
>

E.g. GPT-1/2/3/4 for language modelling

E.g., Vision Transformer for computer vision tasks
E.g., wav2vec 2.0 for speech processing

E.g., GROVER for molecular data (graphs)

E.g., PatchTST for time series forecasting

Coming up: vanilla architecture and key concepts

Later lectures: applications, concrete architectures, (pre-)training, ...

17/48

https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2010.11929
https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/94aef38441efa3380a3bed3faf1f9d5d-Abstract.html
https://arxiv.org/abs/2211.14730

Dot-product attention as a layer

® |et's stack the keys and values into matrices
> Given: q € R¥x, K € R™* YV ¢ R7xdv

Dot-product attention scores: e = Kq € R”

Soft attention: o = S(Kq)

Dot-product attention
DPA(q,K,V)=S(Kq)'V e R%

Scaled dot-product attention (used in original transformer)

ScaledDPA(q, K, V) = S(Kq/\/di

P> Vasami et al: “We suspect that for large values dy, the dot
products grow large in magnitude, pushing the softmax function
into regions where it has extremely small gradients. To counteract
this effect, we scale the dot products by \/dj,.”
» More in exercise
18 /48

https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Self-attention

e Self-attention refers to a type of /ayer for contextualization
> Inputs are element representations 21, ...,2, € R? (i.e , “parts”)
» OQutputs are contextualized element representation cy, ..., c, € RV
» 7 may vary between inputs
e QOutputs are computed from inputs using attention
> One query g;, key k;, value v; per input ¢, each computed from z;
— This motivates the name self-attention
> Query g, determines what is relevant for the i-th output
— Output ¢; “corresponds” to input z;
> Key k; serve as description of the i-th input
> Value v; serve as representation of the i-th input

® We have ¢; = Attention(q;, K, V')

19/48

Single-head attention Scaled DPA

e Compact notation: C = Attention(Q, K,V')
> Q c R™¥9x and C € R™*% contain queries
and outputs as rows
> Eg., DPA(Q,K,V) = Son(QK ")V
> E.g., ScaledDPA(q, K,V) = S(QK " /Vdx)V

Let Z™*? be the input representations

Example: plain self-attention (not used this way)
> Generally not a good idea (exercise)

Example: single-head attention

> Use linear projections (optionally also biases)

Q = ZW where W € R?xdx

K = ZW i where W € Réxdx

V=ZWy where Wy € Réxdv

Wq, Wik, and Wy, are parameters

dx and dy are hyperparameters (typically dx = dy = d)

vyvvyyVvyy

20/48

Multi-head attention

® Multi-head attention: attend multiple times on same inputs
P> Terminology: head = one single-head attention layer

» Each head h € {1,..., H } uses its own parameters
W Wi e Rk and Wil € Rixdv

Outputs C"™ of each head are concatenated

And then projected to input space using parameter W € RFdvxd

Original Transformer: dx = dy = d/H (with d = 512 and H = 8)
» Then: number of parameters/cost similar to single-head attention

® Beneficial because model can choose which representation
subspaces to attend to in a position-dependent way

vVVvYy

Scaled Dot-Product I
Y

Attention

21/48

Computation and path lengths

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, & is the kernel
size of convolutions and 7 the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d*) 0(1) O(logr(n))

Self-Attention (restricted) O(r-n-d) 0(1) O(n/r)

(lower is better)

e Computational complexity
> Self-attention scales well with dimensionality but not sequence length
> Recurrent/convolutional: the other way around
> But note: table misleading, self-attention is really O(n?d + nd?)
(due to computation of queries/keys/values, e.g., when dx = d/H)
e Sequential operations limit parallelizability — drawback of RNNs
® Larger path length between inputs and outputs makes it harder
to exploit long-range dependencies — advantage of self-attention
¢ As discussed, mitigated by linear RNNs / SSMs / RNN with attention

Vaswani et al., 2017 22/48

https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Transformer encoder layer

¢ Transformer encoder layer (encoder block)
> Input: lower-level element representations 2!t = { zi7,...

YT
> Output: higher-level element representations 2! = { z{,..., 2. }
® Two steps: (1) contextualization, (2) local compute

1. Multi-head attention across elements

— incorporate information from other elements
2. Local MLP for each element

— update each element individually

¢ Residual connections / layer normalization in
between (cf. 03-3) tention.
» Both attention and MLP updates do not
. “ e | N—
overwrite but “modify” the element 2]

representation (additively)
® Every element representation depends on all other elements

(cf. bidirectional RNN)
® Template model, parameter sharing, position-independence

> Same projections for queries/keys/values across input elements
» Same parameters of MLP for each input element s

Example: T5 encoder

® Uses pre-layer normalization (Xiong et al., 2020)

> Layer norm right before each subcomponent
> Stabilizes training

® Main path also known as residual stream
> Updated additively by each subcomponent

® Concrete components for T5-Base

> d = 768-dimensional element representations

> H =12 heads, each with key/value
dimensionality for each head is
dx = dy = 64 (=768 in total)

> MLP: dense linear layer (to 3072D) — RelLU
— dense linear layer (to 786D)

» [=12 such T5 encoder layers stacked on
top of each other

X141

addition

v

Eition

Multi-Head
Attention

?

24 /48

https://arxiv.org/pdf/2002.04745.pdf
https://jmlr.org/papers/volume21/20-074/20-074.pdf

Examples on how use to a Transformer encoder

® Transformer encoders produce contextualized representations z!
of input elements x;
» Used as input representation for subsequent modules

> Many different ways to do this

® As in part-based models for element-level tasks, may
> Add element-wise prediction head h on top of each 2%
» Train supervised with ERM using element-level loss L(h(zF),y7)

® As in part-based models for sequence-level tasks, may
> Pool element-level representations (e.g., sum, mean, attention) to
obtain sequence-level representation z
> Add prediction head h, train supervised with ERM using loss L(h(z), y*)

® Alternative: use special classification token CLS
» Input data: z1,..., 2,
» Input to encoder: CLS,z1,..., 2z,
> Add prediction head on only z£ s, which serves as a sequence-level
representation
> Train supervised using L(h(z&<), y*)

25 /48

Outline

3. From sets to sequences

26 /48

From sets to sequences

® Transformer encoders are permutation-equivariant
> Means: permutation of input — output permuted correspondingly
» That's good for sets, but not for sequential data

® Approach 1: modify input
> le., feed f(x;, 1) instead of x; into the Transformer
» Common approach: position embeddings

f(xi,1) = x; + posemb(i),

i.e, position-dependent embedding “applied” to input (here: added)
> Fixed (e.g., original Transformer, RoPE) or learned (e.g., BERT, GPT)
> Note: when padding inputs to common length, pad on the right (1)

e Approach 2: modify attention mechanism
> Based on relative distance iquery — ikey between input elements
— relative positions
> E.g., add distance-dependent bias to attention scores (e.g., T5)
> E.g., add distance-dependent embedding to keys/values
> Again, fixed or learned

® Note: similar ideas used for images, graphs, tables, ...
27/48

https://arxiv.org/abs/2104.09864
https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1803.02155.pdf

Position encodings of original Transformer

For d-dimensional embeddings, the original Transformer used
posemb(4)[2k] = sin(i/100002%/%)
posemb (i)[2k + 1] = cos(i/100002%/)

® | = input position; k = index in position embedding
® Sinusoidal in i, frequency decreases with &
® Transformer encoder learns how to exploit this (when trained
with these embeddings applied)
First positions/elements

28 /48

Learned position encodings

Learned (encoder, MLM)

BERT RoBERTa

100
100

40 300 200
400 300 200

500
500

—

i |
-0.50-025 000 025 050 075 100 00 02 04 06 08 10

Predefined

sinusoid

Learned (decoder)
GPT2

200
300 2200 100

a00

[\

0 100 200 300 400 500

500

20 200 40 &0 800 1000

[

5 10 04 06 08 10

Figure 1: Visualization of position-wise cosine similarity of different position embeddings. Lighter in the figures

denotes the higher similarity.

Type PE MAE
BERT 34.14

Learned RoBERTa 6.06
GPT-2 1.03

Pre-Defined ‘ sinusoid 0.0

Table 1: Mean absolute error of the reversed mapping
function learned by linear regression.

Wang and Chen, 2020

Type PE Error Rate
BERT 19.72%

Learned | RoBERTa 7.23%
GPT-2 1.56%

Pre-Defined | sinusoid 5.08%

Table 2: Error rate of the relative position regression.

29 /48

https://aclanthology.org/2020.emnlp-main.555.pdf

Scalar relative position encodings

,—\
)
o N &

'
N

I

1]

[

m
1
1
i
1l

[

[}

(b)

T

iy
i
m

u
i

—
o
=

T

abhNoONE B N O N B

&
e,
e

Figure 2: Scores of each token attending to the current central
word spice of one attention head in SRPE (Scalar Relative Po-
sitional Encoding). (a): Relative position scores (b): Context
scores (c): Final attentive scores.

Wu et al., 2021 30/48

https://cdn.aaai.org/ojs/17654/17654-13-21148-1-2-20210518.pdf

Example: BERT (encoder-only model, 2018)

e BERT (Bidirectional Encoder Representations from Transformers)
is a sequence representation model

» Many variants; e.g., Sentence-BERT obtain sentence embeddings

e Given an input sequence, BERT produces representations of each
token using the Transformer encoder (no decoder)
> As discussed, tokens correspond to words or parts of words (e.g.,
byte-pair encoding or WordPiece)
» Special tokens are introduced to enhance the input or output
representation

e Key innovations of BERT (more later)

» A simple bidirectional encoder-only model that achieved SOTA
results across a number of NLP tasks at the time

> Pre-trained on large textual corpora using a suitable (i) input
encodings and (ii) self-supervised pretraining tasks

» Fine-tuned in supervised fashion for a particular task at hand

> Open-sourced (code and model)

31/48

https://arxiv.org/pdf/1810.04805v2.pdf
https://arxiv.org/abs/1908.10084
https://en.wikipedia.org/wiki/Byte_pair_encoding

BERT (input representations)

Input [cLs] my dog is cute || [SEP] he likes || play || ##ing || [SEP]

Token

Embeddings E[CLS] Emy Edog Els H Ecute E[SEP] Ehe Ellkes Eplay E“mg E[SEP]
-+ -+ -+ -+ -+ -+ -+ -+ -+ -+

Segment

emanngs | B (B0 | (B [E] [E][B (& | [&) [| [| [E]
-+ -+ + -+ -+ + -+ -+ -+ + -+

Position

v N NN S N I N

[]

Token embeddings = embedding layer

Segment embeddings provide additional information about input
> E.g., “first sentence” and “second sentence’

» E.g., “question” and “answer”

» Other side information can be included in this way as well

Position embeddings to encode ordering

Special tokens
> [CLS] token serves as representation of entire input
> [SEP] token used to separate sentences

Devlin et al., 2018 32/48

https://arxiv.org/pdf/1810.04805v2.pdf

Example: BERT for search

As of 2019 (and apparently still in 2023), BERT models are used to
serve Google search queries.

' O\ Can you get medicine for someone pharmacy
BEFORE AFTER
9:00 v4n 9:00 v4n
google.com google.com

) MediinePlus (.gov)» ency > article

4 HHS.gov) hipaa » for-professionals
Gelgng a prescription filled: MedlinePlus Medical Can a patient have a friend or family member)
E opedia

pick up a prescription ...
Aug 26, 2017 - Your health care provider may give you a

Dec 19, 2002 - A pharmacist may use professional
prescription in ... Writing a paper prescription that you judgment and experience with common practice to ... the
take to a local pharmacy ... Some people and insurance

patient's best interest in allowing a person, other that the
patient, to pick up a prescription

companies choose to use

With the BERT model, we can better understand that “for someone” is an important part of this query, whereas previously we missed the meaning,
with general results about filling prescriptions.

Google Blog, 2019 33/48

https://blog.google/products/search/search-language-understanding-bert/

Example: Vision Transformer (encoder)

® Same idea applicable to grid data (below), graph data (later), ...

® Example: Vision Transformer (ViT, 2020)
> Input element = patch embedding + position (learned embedding)
> And a special [class] token (as in BERT)
» No spatial inductive bias — distant relationships can be modeled

Vision Transformer (ViT) Transformer Encoder

MLP
Head

Transformer Encoder ’

|
- S0 o) 0 088

Multi-Head
Attention

flsrireieo [Linear Projection of Flattened Patches

541 | [11 ‘|1 [] .l []

e —NERENEEE

Ee Embedded

Patches

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer en<zile “weing e bar
Vaswani et al. (2017).

34/48

https://arxiv.org/abs/2010.11929

Outline

4. Transformer decoders

35/48

Some Transformer models for language (1)

2017 2018 2018 2019 2019 2020 2021 2022 2022 2023 2023

2024 2024 2024 2025
JUN JUN OCT FEB OCT MAY SEP MAR NOV FEB MAR

MAR APR DEC JAN

v

i_T j:- -FE« :“?w A LLaj\-ll T
BERT GPT-3.5 P14 4058 OpenAl-ol
GPT-2 InstrutGPT GPT-40 DeepSeek-V3
Transformers GPT-3 ChatGPT DeepSeek-R1

LM Po, 2025 36/48

https://medium.com/@lmpo/a-brief-history-of-lmms-from-transformers-2017-to-deepseek-r1-2025-dae75dd3f59a

Some Transformer models for language (2)

2021

(o)
(208)

Jim Fan, 2023

Evolutionary
Tree

[Open-Source |
Closed-Source)

DeBERTal]
ELECTRA[]

[ALBERTIRN fBeRTILEARTL ¥
ROBERT:
2 ERNTEL)

BERT[)
ELMoLS1¥]

Encoder-on1y,

GloVe]
FastText! Word2Ved

A

@

@PT-4® [Durassic-2tE [Qaudel

LLaMAT)
Anthropic
OPT-IMLIAN LY
BLOOMZ]#] GalacticaVGLU[EN [l
ZQO Minervd G
PaMG
[InstructGPTi® GPT-NeoX[e)
La0AG
. [
d ERNIEs.a?I >
Burassic-1&
Emo
GPT-Neo[®)]

eT-3®

XLNetfc}

Decoder-Only

37/48

https://x.com/DrJimFan/status/1651968203701231616

Recap: Autoregressive Generative Models (from 07)

® Generative model for sequence data y1,y2,...,y € Y

Output distribution decomposed into next-element distributions

ne><t element past elements

—~
p(y1:r) HP T | T)

- next element dlstrlbutlon Pt (ye)

To generate, forward sample from pi(y), p2(y),
We discussed: RNN decoder with hidden state z;
def

> Use py(y) = polylz:)

> Example (discrete output): pg(y|z:) is categorical distribution
(with parameters p, = go(z+))

> Example (continuous output): pe(y|z:) is normal distribution
(with parameters (p,, 3:) = go(2z¢))

Transformer decoders work similarly; in a nutshell

» p, from: hidden state z; — last-output representation d;_

> Prior outputs: Recurrence/attention — masked self-attention

> Inputs: initial state/cross-attention — cross-attention 38/48

Encoder-decoder
Transformer (1)

Encoder-decoder
Transformer for seq2seq;
figure summarizes
generation of the

t-th output element y;
(for discrete elements).

® |eft: encoder

® Right: decoder

pe(y) = po(y|di—1)
Output
Probabilities

dii_1

Add & Norm

Feed
Forward

€l.r

Add & Norm
Al e Mult-Head
Attention
Nx
N Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
A) A)

L J . —
Positional A ¢ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs
(shifted right)
Ti.r Yi:4—1 39/48

Encoder-decoder Transformer (2)

® Transformer encoders map inputs x1, ..., T, to representations
el,...,e; (last layer's output)

e Transformer decoders define next-element distr. p(y|®, y1.,—1)
» To do so, decoder maps outputs ¥, ..., %;—1 produced so far to
representations dy, ...,d;_1 (last layer's output)
» p:(y) computed from (only) d;_; (e.g., via softmax layer)
® Uses Transformer decoder layers: similar to encoder layers but
perform attention twice:
1. Masked self-attention to attend over all prior outputs
— Replaces hidden-to-hidden and output-to-hidden conn. of RNNs
2. Cross attention to attend over inputs (i.e., encoder outputs)
— Replaces attention over input in RNN decoders with attention

® Decoding y; involves

1. Compute d;_ via transformer decoder layers

2. Determine pi(y) = po(yld;—1)
3. Sample y; ~ p¢

40/ 48

Example: T5 (2020) / T5X (2022)

[“translate English to German: That is good."

"Das ist gut."

"cola sentence: The
course is jumping well."

"not acceptable”

"stsb sentencel: The rhino grazed
on the grass. sentence2: A rhino
is grazing in a field."

dispatched emergency crews tuesday to
survey the damage after an onslaught

"summarize: state authorities "six people hospitalized after]

a storm in attala county."

of severe weather in mississippi..”

Figure 1: A diagram of our text-to-text framework. Every task we consider—including

translation, question answering, and classification—is cast as feeding our model
text as input and training it to generate some target text. This allows us to use the
same model, loss function, hyperparameters, etc. across our diverse set of tasks. It
also provides a standard testbed for the methods included in our empirical survey.
“T'5” refers to our model, which we dub the “Text-to-Text Transfer Transformer”.

41/48

https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://arxiv.org/abs/2203.17189

Masked self-attention

e Masked self-attention = attend over only a subset of inputs
» Mask describes set of elements to attend over
» Can be (and typically is) different for each position
— controls information flow across elements
» Specified apriori

e Example: for position 3 out of 5, attend only over inputs 1, 2, 3

| Element 3's / — for input | 1 2 3 4 5
Attention scores 3 5 -1 4 3
Mask 1 1 1 0 0
Effective attention scores 3 5 -1 -0 —00
Attention weights 0.119 0.879 0.002 0 0

® QObserve: updated representation of element 3 depends
» On query of element 3
> On keys/values of elements 1-3
> But not on query/keys/values of elements 4-5

— Excluded elements do not affect output
42 /48

Masked self-attention in Transformer decoders

e Masked attention in Transformer decoders
» At each output position k, only attend over positions 1-k
»> Ensures uni-directional information flow: element representations
di‘ do not depend on yi41, Yk12, - --
> As a consequence, element representations do not change when new
elements are appended by the decoder — no need to recompute
> E.g., to produce p:(y), “only” need to compute di_l, cee dtL_1

Self-Attention Masked Self-Attention

Alammar (2019) 43 /48

https://jalammar.github.io/illustrated-gpt2/

Masked self-attention in Transformer encoders

Masked attention also useful to reduce O(72) cost of self-attention.

(a) global (b) band (c) dilated (d) random (e) block local

Fig. 4. Some representative atomic sparse attention patterns. The colored squares means corresponding attention scores are calculated and a blank square means the attention
score is discarded.

(a) Star-Transformer (b) Longformer (c) ETC (d) BigBird

Fig. 5. Some representative compound sparse attention patterns. The red boxes indicate sequence boundaries.

Lin et al. (2022) 44 /48

https://www.sciencedirect.com/science/article/pii/S2666651022000146

Cross attention

® Recall: Cross attention generally means to attend over elements
from a different model or embedding space

® |n Transformer decoders: encoder-decoder cross-attention

> Keys and values come from input elements zy,

(i.e., computed from final encoder representations ey,)
» Query comes from decoder

(from current representation of resp. output element)

® Again, very similar to decoder RNN of sl. 14, which

> Used RNN encoder states directly instead of computing keys/values
» Used RNN decoder state as query instead of element representation

® To obtain d;_1, need keys/values for inputs and prior outputs
» Can be recomputed every time, but that's expensive
> As these keys/values don't change, typically managed in a so-called
key-value cache (= the "dots” on next slide)
> When processing an element in the decoder, its keys/values are
added to the cache

45 /48

All together now (start of decoding)

2 decoder layers shown

MSA = masked self-attention block
xSA = cross attention block
MLP = MLP block

Each block is residual and
includes normalization
(both not shown)

Red arrow = query
Blue dot = k/v pair
Blue arrow = use of k/v pair

Each query is computed

using W of its ’ €1 €2 €3
consuming layer T T T

Transf d Yo
Each k/v pair is computed ’ ranstormer encoder ‘ ’
using W and Wy, (start token)
of its consuming layer ’ o ‘ ’ . ‘ ’ s ‘

46 /48

All together now (generating 1)

2 decoder layers shown

MSA = masked self-attention block

xSA = cross attention block
MLP = MLP block

Each block is residual and
includes normalization
(both not shown)

Red arrow = query
Blue dot = k/v pair
Blue arrow = use of k/v pair

Sample y;1

Each query is computed
using W of its

consuming layer

MSA
MLP
xSA
1/174
e [(o] (]
T T P ff
Transformer enCOder ‘ ’ Yo

Each k/v pair is computed ’
using W and Wy,

of its consuming layer ’ z1 ‘ ’ Zo ‘ ’ x3 ‘

(start token)

46 /48

All together now (generating y2) samele 1 ISamP'e v

d
2 decoder layers shown 0
MLP

MSA = masked self-attention block
xSA = cross attention block xSA

MLP = MLP block K‘W&

Each block is residual and MSA
xSA

includes normalization
(start token)

(both not shown)

Red arrow = query
Blue dot = k/v pair

Blue arrow = use of k/v pair

/%
Each query is computed 4 4
using W of its ’ “ ‘ ’ © ‘
consuming layer T T

Transformer encoder

Each k/v pair is computed ’
using W and Wy,
of its consuming layer ’ z1 ‘ ’ Zo ‘ ’ x3 ‘

46 /48

’Sample yl‘ ’Sample yg‘ ’Sample yg‘

All together now (generating y3)

d d d;
2 decoder layers shown 0 ! i

’MLP"MLP"MLP‘

MSA = masked self-attention block
xSA = cross attention block ’ xSA ’ xSA ‘ ’ xSA ‘

MLP = MLP block %&V’

'y

Each block is residual and

. . MSA MSA MSA
includes normalization ;
(both not shown) e 1 J

’ MLP ‘ ’ MLP ‘ ’ MLP ‘

Red arrow = query

Blue dot = k/v pair ng Jé;‘léﬂ

Blue arrow = use of k/v pair —
/ %

A

Each query is computed 4 4
using W of its “ ‘ e ‘ ° ‘ ’ MSA ‘ MSA MSA
consuming layer T T T 3 1 ﬁ

2/1‘ ?/2‘

.. Transformer encoder ‘ ’ Yo
Each k/v pair is computed ’

using W and Wy,
of its consuming layer ’ z1 ‘ ’ Zo ‘ ’ x3 ‘

(start token)

46 /48

Decoder-only Transfomers

¢ Decoder-only Transformers do not use an encoder, but solely
decoder-only blocks trained autoregressively (no cross attention)
> As before (cf. 07), can be causal (MSA only) or non-causal (full
self-attention for input parts, MSA for output parts)

¢ Used as a (conditional) deep generative model

E Classification | st | Text | Extact \]4
evaiment [“sun | premise | oo | Fypothess | exac | -

®

rrem]|| o, LT -l

12x [[stan | Textz [peim [Text1 |Exuac||}-|

[[stat | Context | pelm | Answer1 | Extact H—-|

Self Attention
Multiple Choice [stat | Context | peim | Answer2 [Exvact |H

[| comme T oo [omrn e 4

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

47/48

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/abs/2303.08774
https://openai.com/blog/chatgpt/

Discussion

e Key ideas of Transformers are very general

> Self-attention over parts (e.g., a token, an image patch, a feature
vector, a graph vertex,)

> Position information added to parts, instead of being “hard-coded”
(may use different encodings for sets, sequences, images, graphs)

> Many variants (some discussed later); see survey by Lin et al.
(2022)

® |mplementation and pre-trained models readily available
> E.g., using the Transformers library

from transformers import pipeline
classifier = pipeline("sentiment-analysis'")
classifier('The dog ate the cake.')
[{'label': 'NEGATIVE', 'score': 0.7528}]

® More on training and using powerful models such as Transformers
in lecture 10

48 /48

https://www.sciencedirect.com/science/article/pii/S2666651022000146
https://www.sciencedirect.com/science/article/pii/S2666651022000146
https://huggingface.co/docs/transformers/en/index

Deep Learning

09 — Graph Learning
Part 0: Overview

Prof. Dr. Rainer Gemulla
Universitdt Mannheim

Version: 2025-1

Graph learning

® Graphs everywhere, e.g.
» World Wide Web, social networks, citation graphs, protein-protein
interactions, purchasing networks, similarity graphs, road networks,
bitcoin transactions, knowledge graphs, ...

® Graph learning = machine learning with graphs

® Examples

> Vertex or edge classification (e.g., topic of website, friend or foe)

» Graph classification (e.g., properties of a molecule)

> Link prediction (e.g., facts in knowledge graph) or regression
(preference in recommender systems)

> Interesting vertices (e.g., influential bloggers, important web pages)

> Vertex clustering (e.g., similar products)

> Interesting subgraphs (e.g., communities, frequent subgraphs)

> Generating graphs (e.g., neural architecture search, scene graphs in
computer vision)

> Exploitation of background or domain knowledge represented as
(knowledge) graphs

Our focus: Spectral/neural methods for graphs.

2/10

Some challenges in graph learning

® Irregular structures
> We looked at sequences and grids so far
> Relationships between graph vertices much more irregular
» How to apply operations such as recurrence, convolutions,
self-attention or pooling on such data?

® Heterogeneity and diversity
> Within a graph: e.g., vertex degrees, types, features, modalities
> Across different graphs: e.g., weighted /unweighted,
directed /undirected, signed/unsigned, labeled/unlabeled, ...
> Widely varying tasks and domains
® No independent examples
> Each vertex (example) related to other vertices via links
e Scalability

» Graphs may be very large

> Learning methods may be complex/expensive
® Dynamic graphs

> Vertices, edges, features may change over time

3/10

Deep learning for graphs

® Deep learning methods can be applied to graph learning

e Generally, use graph structure to facilitate reasoning

» Cf. CNNs, where we used a fixed grid structure
> Now: graph structure expresses relationships

KR T
l\ /l>\| /A

>_<\/|><| /A’ﬁ\

® Part-based view also applicable: input represented in terms of
> Global features (if any)
> Parts (vertices) and relationship between parts (edges)
— Relationship between parts now input-dependent
> Part features (= initial part embeddings): vertex and/or edge
features

Wu et al., 2021

4/10

https://ieeexplore.ieee.org/abstract/document/9046288

Key operations

We generally use the same type of operations as before:

1. Contextualization: incorporate information from other parts
into each part embedding; e.g.,

> Spectral embeddings

» Graph convolutions

> Message passing and graph recurrences
» Graph transformers

— Increase “receptive field" of each part’s representation
2. Local compute: update each part embedding individually
> As before; e.g., an MLP

3. Pooling: aggregate multiple (or all) part embeddings
> Readout as before (e.g., pool vertex embeddings)
» Pooling to change resolution (e.g., coarsen a graph) more involved

— Increase “spatial invariance”

These operations are used to obtain higher-level representations
(embeddings) of each part and/or of the entire graph.

5/10

Example: Graph classification (supervised)

Gconv Gconv

\

* Pooling |
\

5 e - =z =

Graph

Readout MLP y
‘ Softmax @

® Many graphs, often smaller (e.g., molecules, ego-networks, ASTs)
® Given a set of labeled graphs, learn to classify new graphs

® Supervised learning
> Learn graph embeddings to use as input features for a (learned)
prediction head (e.g., softmax regression)
» Use input features and connectivity structure

Wu et al., 2021 6/10

https://ieeexplore.ieee.org/abstract/document/9046288

Example: Vertex classification (transductive)

Gconv Gconv
Graph

+ Outputs

Single graph, often large (e.g., networks, knowledge graphs)

® Some vertices labeled — Goal: label the unlabeled vertices

Semi-supervised learning (transductive inference)

> Learn vertex embeddings to use as input features for a (learned)
prediction head (e.g., softmax regression)

» Use input features and connectivity structure

For example, using holdout validation

» Train using training labels and full graph

> Validate using holdout labels and full graph

W et o 2001 Predict labels of unlabeled vertices of full graph

7/10

https://ieeexplore.ieee.org/abstract/document/9046288

Outline (Graph Learning)

0. Overview
1. Spectral Embeddings
2. Deep Learning for Graphs

8/10

Lessons learned

e Connectivity structure of graphs can be represented by matrices
(and vice versa)

» Adjacency matrix
» Degree matrix
» Graph Laplacian

® Spectral properties of graph Laplacian relates to structural
properties of the graph

® Deep learning for graphs

» Computation layers to obtain higher-level vertex representations
— Based on recurrence, spectral/spatial convolution, transformers

» Pooling layers for coarsen the graph

> Readout operations to obtain graph representation

® Many variants and design choices

> Hyperparameter choice/optimization important

9/10

Literature

e Ulrike von Luxburg
A Tutorial on Spectral Clustering
Statistics and Computing, 17(4), 2007

® Wu et al.
A Comprehensive Survey on Graph Neural Networks

IEEE Transactions on Neural Networks and Learning Systems,
2021

® Zhang et al.
Deep Learning on Graphs: A Survey
IEEE Transactions on Knowledge and Data Engineering, 2020

e Xia et al.
Graph Learning: A Survey
IEEE Transactions on Artificial Intelligence, 2021

10/10

https://link.springer.com/article/10.1007/s11222-007-9033-z
https://ieeexplore.ieee.org/abstract/document/9046288
https://ieeexplore.ieee.org/document/9039675
https://ieeexplore.ieee.org/abstract/document/9416834

Deep Learning

09 — Graph Learning
Part 1: Spectral Embeddings

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-2

This lecture

® Preliminaries for later lectures

® |ntroduction to graph signals & graph Laplacian

® Spectral embeddings

» Low-dimensional, continuous representation of each vertex in a
graph (i.e., a form of vertex embedding)

» Computed solely from and captures the graph structure

> Represents “position” of each vertex in the graph

e Useful to

> Perform spectral clustering (= clustering of the graph's vertices)
Obtain features for graph learning

Perform graph convolutions

Obtain position embeddings for graph transformers

vvyvyy

2/36

Outline

1. Background

3/36

Spectral clustering

e Consider the following graph

e Can we cluster the vertices into two clusters (or “communities”)
such that

1. Neighboring vertices tend to be in same cluster
2. Cluster sizes do not not vary “too much”

® Surel

e Spectral clustering is one approach to do this

1. Compute spectral embeddings of each vertex in the graph
2. Cluster spectral embeddings (e.g., using k-Means)

4/36

Graph-based semi-supervised learning (GSSL)

e Consider the following partially-labeled graph

e Can we label the remaining the vertices such that neighboring
vertices tend to have the same label?

e Sure!

® Graph-based semi-supervised learning is one approach to do this
> Learn a vertex classifier (e.g., based on vertex features)
» During learning, add a penalty term to the cost function that
penalizes assigning different labels to neighboring vertices
» One approach: penalize using graph Laplacian

5/36

Similarity graphs

® When we interpret each edge as expressing similarity, then
P Spectral clustering — cluster similar vertices
> GSSL — label similar vertices similarly (exploiting homophily)
¢ Given any dataset ¥ = {x1,..., 2, } and a similarity function
s(z,x') — RT can construct a similarity graph
» Vertices correspond to data points
> Edges connect similar data points
» Optionally: edges weighted by similarity
® Many approaches to construct similarity graph; common:
» /-Nearest neighbor graph: connect each vertex to its k nearest
neighbors
» c-neighborhood graph: connect vertices « and =’ when
s(x, ') > ¢

e Why? Can then use graph-based learning on & via resulting
graph

6/36

https://proceedings.neurips.cc/paper_files/paper/2023/file/01b681025fdbda8e935a66cc5bb6e9de-Paper-Conference.pdf

Example: Similarity graph for half-moon dataset

® 10NN similarity graph of 2D Euclidean data
e Gaussian kernel used as similarity function

® Note: similarity graphs model local similarities (but no
dissimilarities)

7/36

Example: Spectral embeddings

The spectral embeddings for this graph are:

oo%o §o Q
0°%®
oo ©
o
o o@
® o Oo%o
Oo OO@DO
&,
0% o

® Shown here is the second component of the spectral embedding

(a single real value per vertex)
® Red: negative

® Blue: positive

8/36

Example: Spectral clustering

Spectral clustering of this graph into two clusters gives:

%)
o
0 0% §o o8
o-r® 80
oo © O
o & o @
o s 5 o
P o Re oQ
(o) %O@Oo
o o
S o
0% o o 0O
o ° o

® Observe: points that are far away may end up in same cluster
— Clustering only considers local similarities

® Clustering methods such as k-Means used on original data are
global and give very different results

9/36

Outline

2. Graph signals and graph Laplacian

10/36

A graph is a matrix is a graph
® Let G = (V,E) be a (weighted) graph
® Vertices V ={v1,...,v, }

Edge (i,7) € E has positive weight a;; (1 if unweighted)

Convention: absent edges (i,7) ¢ E have weight a;; =0

Adjacency matrix A is n x n matrix with entries a;;

Undirected graph = A symmetric (A =A")

(Out-)degree of vertex i given by d; = >, a;; = a1

® Degree matrix D is n x n diagonal matrix with d;; = d;

0 00O0O 00000
@ 10110 03 000
01000 00100
01100 00020
00010 0 0 0 0 Ly

Graph features

® Graph vertices and edges may be associated with features

> Vertex features: X € R"*P
> Edge features: X¢ e RIFIXC

» More generally, property graph model: arbitrary key-value pairs

b “Consumer
“Freddy” Electronics”
FR Bart of black
part of -GB
authors, /@ 3“
“Tablets” “Phones” in . Apple ”
5/5 rates| iPhone 5
stars, .
/ n 16GB authors
rates) “Apple 5/5 stars
white . "
iPhone 4
“Apple iPad ik likes
MC7o7LL/A" contains 2 1kes
N black
Tates contains 1 records “Karl"”
4/5 stars delivered 24/02/14 DE

contains 1 @ ordered

24/02/14

records

“Mike"”
us

Key: @ Product ° Category e Customer ° Review

@ Order

Fig. 1. Property graph illustrating a typical business scenario.

Rudolf et al., 2014

12/36

https://link.springer.com/chapter/10.1007/978-3-662-46839-5_11

Graph signals

e A graph signal is a function f: V — R
» Maps every vertex v to a real number f,
— Can be represented as a vector f € R™
» Example: real-valued vertex features (x.;) and (as we will see)
vertex embeddings or hidden vertex representations

Yo\ 1 v=un 1
@ \OJ @ fv)=20 v=vy f=1]0
1 v=uw3 1

e A key tool to graph signal processing is a matrix known as the
graph Laplacian
» More specifically, the eigendecomposition of the graph Laplacian
> Eigenvalues and eigenvectors expose structural graph properties
(e.g., connected components, spectral clustering)
> Eigenvalues and eigenvectors allow to define operations such as
filters and convolutions on graph signals

13/36

https://link.springer.com/article/10.1007/s11222-007-9033-z

Graph Laplacian

Definition

Let G be an undirected graph with positive edge weights. Denote
by A the (weighted) adjacency matrix of G, and by D the degree
matrix of G. Then

L=D-A
is called the (unnormalized) graph Laplacian of G.

Note that self edges (a;; > 0) do not affect the graph Laplacian.

100 010 1 -1 0
1 1
02 0 10 1 1 2 -1
00 1 010 0 -1 1
G D A L

14/36

Normalized graph Laplacians
Definition
There are two common normalizations of the graph Laplacian:

Lsym _ D—l/QLD—l/Q =] — D—1/2AD—1/2
L,.=D'L=1-D'A

® Normalization is performed w.r.t. degree

® Lgm is symmetric, Ly, is not

1 -1 0 1 -1/V/2 0 1 -1 0
-1 2 -1 ~1/v2 1 -1/V2 -05 1 —0.5
0 -1 1 0 -1/vV2 1 0 -1 1

L Leym Lu

15/36

Properties of the graph Laplacian (1)
Theorem

For every graph signal f e R", fTLf = ZZ“M fg) .
=1 j=1

e fTLf is a quadratic form and small when neighboring vertices
(connected with high-weight edges) take similar values according
to f — l.e., small when values change “slowly”

Proof. -
f'Lf =f'Df-f'Af= Zd -3 aiififs
= 1] 1
;(Zd 225" gk, +Zd :)
=1 j=1
;(Zzaz] 2f1f]‘|‘f) :izzaij(f
i=1 j=1 =1 j=1

O]

16/36

Properties of the graph Laplacian (2)
1
fTLf = 3 > ay(fi - £)?

O—0—

f'Lf=0
(Do
fTLf—z

O——(2—O

fTLf =18

17/36

Properties of the graph Laplacian (3)

Theorem

L is symmetric and positive semi-definite.

® Recall: A matrix A™*" is called positive semi-definite if
x! Az > 0 for any = € R”.
e Implies that & " La is a convex function (in x)
e Implies that L = PP for some P (oriented incidence matrix)

Proof. Since D and A are symmetric, so is L. Since x Lz >0
(see slide 16) for all x € R™, L is positive semi-definite.

18/36

Outline

3. Eigendecomposition of the graph Laplacian

19/36

Background: Eigenvectors and eigenvalues

® A non-zero vector v € R" is an eigenvector of A € R™*" if
Av =)o

> If v in an eigenvector of A sois v’ =cv for 0 #c € R as
Av' = cAv = chv =\’
A is the corresponding eigenvalue

Collection of eigenvalues is called spectrum of A

The eigenvalues are the roots of the characteristic polynomial

pa(A) = det(A — \I)

We can factor pa(A) as

pa(A) = (A= A)™ - (A= An)"™,
where 1 <n; e Nand), n;=n
> n, is called the algebraic multiplicity of \;
» There are 1 < m; < n; linearly independent eigenvectors associated
with eigenvalue \;
> m; is called the geometric multiplicity of A;
> Note: Some eigenvectors can be complex 20/36

Background: Eigendecomposition

® The eigendecomposition of A € R™" is given by

A=QAQ,
where
» @ is square and has eigenvectors as its columns
> A is diagonal and has eigenvalues on its diagonal
® Does not always exist; if it does, A is called diagonalizable
® Some properties

1. When A is symmetric, A and Q are real-valued and Q can be
chosen to be orthogonal

m For example, when L = PP, consider SVD of P =UXV "
m L=PP = (USVH(USZVT =UZ*U" = QAQ"
2. When A = QAQ ™, then tr(A) ef Yot = ;A =tr(A)
* Note:
1. L (and Lgyy,) are symmetric
2. tr(L) = sum of degrees = 2x sum of edge weights

21/36

Eigendecomposition of graph Laplacian

e Eigendecomposition L = QAQ ' always exists, since L symmetric
> (@ orthogonal
» Convention in this lecture: order eigenvalues in ascending order

® Example
1 -1 0
L=(-1 2 -1
0 -1 1
1/vV3 —1/vV2 1/V6 0
Q=|(1/V3 0 —2//6 A= 1
1/vV/3 1/vV2 1/v6 3

® g, known as Fiedler vector (cf. slide 8)
P |.e., eigenvector corresponding to second-smallest eigenvalue

> Here gy = (—1/v2 0 1/v2)'

22/36

Spectrum of the graph Laplacian

Theorem
All eigenvalues are non-negative and real-valued and the smallest
eigenvalue is A\ =0, i.e.,

0=XM<...< 1 < A\

An eigenvector corresponding to A1 = 0 is the all-ones vector 1.

e le, \1=04g=1/y/n
Proof. All eigenvalues of a symmetric matrix are real. To see that
they are also non—negative recall from slide 16 that

v Lv== Zam —vj 2>0

since all a;; > 0. If Lv = v, then 0 < v Lv = A ||v||* and thus
A > 0. Finally, 1 is an eigenvector with eigenvalue 0 as the row
sums of L are all 0 by construction; hence L1 = 0 = 01.

23/36

Example: Eigenvalues/-vectors of graph Laplacian (1)

® We can view each eigenvector g; € R™ of the graph Laplacian as
a graph signal (with f(v) = [g;]v)
e It holds: g/ Lq; = \; (as we chose @ orthogonal so that ||g,|| = 1)

® As eigenvalues are sorted in ascending order, the first eigenvectors
are more “consistent” with the graph (in that qZTLqZ- smaller /
neighboring values more similar) than the later eigenvectors

24/36

Example: Eigenvalues/-vectors of graph Laplacian (2)

°
o
N o® %50, @
000 Qo ® >
o%® %
° o
o &2 & o @
©
©
@ o °q og
P00
G Oo@@o o o
Ooo(g% oo
o o
o
°FCo, %ooo
° °
&
o
& o @
CI %
00%0 8
°
i .
©0° oo
o
o
050
o

A4 = 0.29

25/36

Connected graphs

Theorem
If G is connected, then eigenvalue O has multiplicity 1, i.e., Ay > 0.

O—0—O O OmnC)

A =0 A=1>0

Proof. Recall that 1 is an eigenvector of L with eigenvalue 0.
Suppose that 0 £ v # ¢1 is an eigenvector of L with eigenvalue \.
Since G is connected, this implies that there are two neighboring

vertices 7' and j’ such that vy # vjr. Now
1
Mol =v Lo = 5 Zaij(vi — ;)% > ayji(vi —vy1)> >0
l?-j
so that A > 0.

26 /36

Connected components

Theorem
The multiplicity k of eigenvalue 0 is equal to the number of
connected components Gy, ..., Gy of G. The corresponding

eigenspace is spanned by the indicator vectors 1¢, (value 1 for
vertices in G;, value 0 otherwise).

Proof. Let Lq,..., L be the graph Laplacians of the connected
components. We have \i(L;) =0, A2(L;) >0, and vy (L;) = 1.
Order w.l.o.g. the vertices by their component so that

L,
Ly
L =

Ly

Since L is block-diagonal, the spectrum of L is given by the union
of the spectra of the L;. The corresponding eigenvectors are the

eigenvectors of L;, filled with 0 at positions of other blocks.
27/36

Connected components (example)

1 -1 0]
-1 2 -1
0 -1 1
O——(0—©

1 -1 0
-1 2 -1
0 -1 1

|

O—0—O

A =0

Rayleigh-Ritz theorem (1)

e Recall that we can interpret f' Lf as a way to measure whether
f assigns similar values to neighboring vertices

How can we pick f optimally?

Trivial solution: constant values

>
>
>

f(v) =1 forall v eV implies f ' Lf =0
Not very helpful

Note: f x g, and fTLf=0=X\

— First eigenvector of L is trivial solution

Non-trivial solution easy if GG is not connected

>

VVvVYVYY

Let G; be i-th connected component

Keep signal constant within component (see previous slide)
f(v) =T[v e G;] implies f T Lf =0

More helpful, exposes connected component

Note: f x g, and FTLf=0=\

— i-th eigenvector (appropriately ordered) of L is solution

What if G is not connected?

29/36

Rayleigh-Ritz theorem (2)

Theorem
The solution to the optimization problem
minimize f'Lf
subjectto f 11
IFll =1

is given by q,, i.e., the Fiedler vector.

® This is a consequence of the Rayleigh-Ritz theorem

> States that when L is symmetric, eigenvalues/eigenvectors are the
critical points of the Rayleigh quotient fTLf/fo with f #0

e Consequence: @, is best non-trivial solution

e Likewise: k-th best (i.e., orthogonal) solution given by g,
> l.e., orthogonal to “prior” solutions qy, ..., q;_4

30/36

Rayleigh-Ritz theorem (3)

* Problem: min fTLf st. f L 1and ||f] =1

® Can show: problem is relaxation of “minimum ratio cut” problem

» Roughly: partition a graph into two partitions such that partition
sizes are balanced and few connections between partitions
» Cost of minimum ratio cut > Ay
®)5 tells us how well we can partition a graph
» The smaller, the better

¢ Corresponding eigenvector g, tells us how to partition
> Simple heuristic: use sign of g,'s entries
» Or run 2-means on entries of g,
> Insight used in spectral clustering graph partitioning method

31/36

https://link.springer.com/article/10.1007/s11222-007-9033-z
https://link.springer.com/article/10.1007/s11222-007-9033-z

Outline

4. Spectral embeddings

32/36

Spectral embeddings

® We can associate a vertex embedding z, € R” with each
vertex v € V

» D is dimensionality of embedding
> z, is a low-dimensional representation of this vertex

® \ertices represented in D-dimensional coordinate system
> k's entry of z, = value of k-th coordinate for vertex v

® Spectral embeddings

> Vertex embeddings obtained from eigenvectors Q of graph
Laplacian

> Let Qp be n x D matrix of the first D columns of Q

(i.e., eigenvectors corresponding to D smallest eigenvalues)
P> Spectral embedding of v = v'th row of Qp,

(i.e., corresponding values of v in the D eigenvectors)

® Spectral clustering into K partitions ~ run K-means on Qg
— Spectral embeddings enhances clustering property of the data

33/36

Example: Spectral embeddings

&,
o
& o ©
o 8 o
) o 3
0050 o
%0° 00
o
050
o
° @
o8 ° o
o
oo

A4 = 0.29

34/36

Example: Spectral clustering (1)

=
=
-1 CBOBOED O @D
»
=l
L o
= -~
»
3
=
T
=
=il
! T T T T T
—0.2 —0.1 0.0 0.1 0.2
a

Do
& o @©
o <
o
o o
R0 ?
o8 o
OOO oo
2 o
L
0g0

Q5 (w/o 1st column)

35/36

oooq’o So)
0°®
> &,
o @
° o
°
@ o oogp og
%o o
0050 o
©0° o ©0
° o
° %, °°
96 Yogo0

Example: Spectral clustering (2)

oo%ogo ® =Y
o°® %
° o
& o ©
o o ® .
& o °d, 3
o
o 0050 o
©0° o ©0
oo, %ooo

o % So ® [*Y
0%® %
o o
& o @
e o 9 o
@ o % og
°
b og® o o
000 oo
o ©
0%, Y050

0 % So [*Y

0 %® %

Q,)O o

& & o ©
°) o o
@ o %o og

°
© ofw o o
000 oo

Spectral clustering (k = 4)

Spectral clustering (k = 5)

36/36

Deep Learning

09 — Graph Learning
Part 2: Deep Learning for Graphs

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-1

Recap: Deep learning for graphs

® Deep learning methods can be applied to graph learning

e Generally, use graph structure to facilitate reasoning

» Cf. CNNs, where we used a fixed grid structure
> Now: graph structure expresses relationships

KR T
l\ /l>\| /A

>_<\/|><| /A’ﬁ\

® Part-based view also applicable: input represented in terms of
> Global features (if any)
> Parts (vertices) and relationship between parts (edges)
— Relationship between parts now input-dependent
> Part features (= initial part embeddings): vertex and/or edge
features

Wu et al., 2021

2/43

https://ieeexplore.ieee.org/abstract/document/9046288

Recap: Key operations

We generally use the same type of operations as before:

1. Contextualization: incorporate information from other parts
into each part embedding; e.g.,

» Spectral embeddings
» Graph convolutions
> Message passing and graph recurrences
» Graph transformers
— Increase “receptive field" of each part’s representation
2. Local compute: update each part embedding individually
> As before; e.g., an MLP
3. Pooling: aggregate multiple (or all) part embeddings
> Readout as before (e.g., pool vertex embeddings)
> Pooling to change resoluti on (e.g., coarsen a graph) more involved

— Increase “spatial invariance”

These operations are used to obtain higher-level representations
(embeddings) of each part and/or of the entire graph.

3/43

Learned contextualization

® Last lecture: Spectral embeddings

>

vVYvyy

>

Obtained solely from graph structure

Input: an undirected, unsigned graph

Output: vertex embeddings that encode “position”
Task-dependent information (such as labels) or additional infor-
mation (e.g., graph/vertex/edge features) not taken into account
In this sense: Not learned

® This lecture: learned embeddings

>
>
>

Learned for the task at hand
Incorporate task-dependent and/or additional information
Typically: more general types of graphs (e.g., directed graphs)

® Key questions

>
>
>

How to perform contextualization and pooling for graph data?
How to design DL architectures for graph data?
How do different approaches compare to each other?

4/43

General approach

® Main focus: undirected graph G = (V, E)) with vertex features x,
forveV
> Edge directions, edge features, and graph-level features can be
handled by most of the approaches as well
> We'll discuss this examplarily as we go

® Notation

» n = |V| for number of vertices
» 7 for embeddings dimensionality
» Initial embeddings zgo) € RZ given by vertex features (e.g.,

2 = x,) and/or learned (e.g., transductive settings)

» Operations compute higher-level features zg,l) € R?
Represented as a matrix Z\) € R"*Z
» Readout and prediction head applied to final features

v

5/43

Outline

1. Graph Convolutions

6/43

*Background: Discrete Fourier transform and convolutions

® Discrete Fourier transform (DFT)

> Signal & € C™ in time domain

P> Transformed signal & € C™ in frequency domain

» Can be expressed via an n x n complex DFT matrix F' € C**"
such that & = Fa (DFT) and & = F~'& (inverse DFT)

> F/\/nis unitary (complex analogue of orthogonal) — F~' = 1 F*

Elements i), = f} @ of & called Fourier coefficients

Original signal x = F~ & = %Zk s

» Columns f of F* are (scaled) samples from a complex sinusoid
with frequency (k — 1)/N (i, 0,%,..., %)
— Original signal = linear comb. of signals of multiple frequencies

» Elements of f} are slowly changing over time for small &k (low
frequency); in particular, f7 o<1

» And quickly changing for larger k (high frequency)

® iy encodes “strength” (amplitude |Z|) of frequency (k — 1)/N

Property: (discrete circular) convolution in time domain
corresponds to element-wise multiplication in frequency domain

—

TRW=TOW
7/43

https://en.wikipedia.org/wiki/DFT_matrix
https://en.wikipedia.org/wiki/Unitary_matrix

Signal: x(t) = 3sin(2nt) + sin(274t) + 0.5sin(277t), 50 samples in [0, 1]

h
Ty |2
J
N 60
0 140
24 20 4]]
N L i
0.00 0.25 0.50 0.75 1.00 0 10 20 30 40 50
W |y,
0.100
0.8
0.075 A
0.6
0.050 0.4
0.025 1 021
0000- T T T T T 00 T T T
0.00 0.25 0.50 0.75 1.00 0 20 40
o
. i
(x®w) [[x ® wli| = |Tpwg| = |2k |Wk]
60
]
40
o
20
Ll
oL L

000 025 050 075 1.00 0 10 20 30 40 50 8/43

Graph Fourier transform

¢ Graph Fourier transform

» Graph signal & € R" in spatial (vertex) domain

P> Transformed signal & € R™ in spectral domain

» Fourier matrix Q—r taken from eigendecomposition L = QAQT of
graph Laplacian; we have & = Q"z and z = Q%

> Q is orthogonal - Q = (Q) !

Elements), = q;a: are Fourier coefficients

Original signal € = Qx =), &1q;,

> Columns g, of Q are eigenvectors and correspond to “frequency”
A (recall 0 = X; <--- < Ap)
— Original signal = linear comb. of signals of multiple frequencies

> Elements of g, are slowly changing over graph for small k (since
g} Lg,, = \;); in particular, g; < 1

> And quickly changing for larger k (high frequency)

e i, encodes “strength” of frequency \x

Define: graph convolution in spatial domain as element-wise

multiplication in frequency domain

— A A ~
Txgw =T OW
9/43

Eigenvectors/-values correspond to signals/frequencies

qlv)\1:()

g9,)\2 = 0.04

s, A5 = 0.83

Og

)
o

s, As = 2.03

qo0,)\20 =7.09

o8
§o

q100:)\100 = 16.00

10/43

Signal: © = 3q, + q5 + 0.5g5 + 5g4y, n = 100

X
g
® oy @
o® go ©q
o
o o
& S
5 By @ ;
(e} o Og
- TR
o
w
® Fha, @
§8e %o
» %
o o
s 00
% 20000 °
o Y000 o
© o
€T kg w
o
2 go
3B, %

T

o]

<]

o

o~

_

L
T T T T T T T T T T T
1 10 20 30 40 50 60 70 80 90 100

w (= filter 0)

<

&

©_|

o

<

S

w

S

L

Al s s — T 1
1 10 20 30 40 50 60 70 80 90 100

— N RN
THxgw =xTxOW

|

S

<

S

=]

S

o

s

o

°ST T 1 T 1 T T T T T 1T
1 10 20 30 40 50 60 70 80 90 100

11/43

Spectral convolution and learnable filters

/\ A

® Define: @ *¢g fow

e Equivalently,

wice=Q((Q'w) © (Q'z))

——

w f

def
e 0= w=Q" wis called a filter

® Spectral convolution with learnable filter

convg(z]0) ¥ QO0(Q x) = QOQ =

where ® = diag (0)

> We learn filter 8 directly

> More efficient than learning w and transforming it

> Easier to interpret: elements of 0 refer to spectral domain
(frequencies), not graph domain (vertices)

> le, entry O describes whether to reduce (< 1) / retain (=1) /

boost (> 1) corresponding frequency of graph signal «
12/43

Spectral convolutional layers

® Spectral convolutional layers operate on multiple graph signals
(channels) simultaneously

» Z input channels, represented by an n x Z matrix Z(¢~1)
» 7’ output channels, represented by an n x Z’ matrix z"

® Qutput channels are computed as follows

z, chonvG |0“)

> le., j'-th output channel is sum of filtered input channels

» One learnable filter for each input-output channel combination
— Z - Z' filters in total

» Entire layer has Z - Z’ - n parameters

e Typically followed by a non-linearity

13/43

Example: vertex classification (transductive)

D
G
@, % hidden_.K
xy)

layers
input layer output layer

(a) Graph Convolutional Network (b) Hidden layer activations

Figure 1: Left: Schematic depiction of multi-layer Graph Convolutional Network (GCN) for semi-
supervised learning with C' input channels and F' feature maps in the output layer. The graph struc-
ture (edges shown as black lines) is shared over layers, labels are denoted by Y;. Right: t-SNE
(Maaten & Hinton, 2008) visualization of hidden layer activations of a two-layer GCN trained on
the Cora dataset (Sen et al., 2008) using 5% of labels. Colors denote document class.

Kipf and Welling, 2017 14 /43

https://arxiv.org/pdf/1609.02907.pdf

Example: graph classification

/

v

/

=

s

£
=

CONV r POOL r CONVP POOL IGLOB DENSE
I I I | I I'T

=
g

boRvie

W

/\

Ne

Casalegno, 2021 15/43

https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f/

Supported graphs

® Spectral convolution directly supports graphs that are undirected
and optionally weighted (with non-negative weights)
> Required for Laplacian / spectral analysis
> Example: similarity graphs (GSSL is a key application, cf. sl. 14)

But: can be more generally applied

Directed graphs supported by

1. Dropping edge directions (looses information)

2. Applying convolution for each direction separately
(and optionally pool)

Multi-relational graphs (i.e., different edge categories) supported by
> Dropping edge categories (looses information)
> Applying convolution for each edge category separately

(and optionally pool)

® More general vertex features (e.g., categories or textual data)
supported by first embedding them into R” using a subnetwork

Similar ideas also applicable to other types of graph neural
networks 603

Discussion

® Plain spectral convolution layers often infeasible in practice
> Many variants exists to make them (more) feasible

® Large number of parameters; possible solutions:
1. Use only first eigenvectors
2. Interpolate @ using a cubic spline
3. Use a localized filter of form diag(6) = Zfzo o A® with parameters
® Parameters cannot easily be shared across multiple graphs
» Depend on graph Laplacian and, in particular, its eigenbasis Q
® Not scalable to large graphs
> Filters not localized in spatial domain
— Each node’s representation may be affected by all other nodes
> Expensive; at least O(n?) for forward and backward pass
[)

Scalabilty problem addressed by localized filters
> Localized filters are /{-localized

— Each node’s representation only affected by its K-hop neighborhood
» Can be computed in time complexity of only O(K|E|)
Especially effective/efficient when stacking multiple K = 1 layers
Reveals connection between spectral and spatial convolution (later)

v

v

17/43

https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1606.09375
https://arxiv.org/pdf/1609.02907.pdf

Outline

2. Message Passing and Graph Recurrences

18/43

Spatial convolutions and MPNNs

(XXX ™

XIAIXKT R

KX,

y

Recall the convolution operations of CNNs: for each grid point,

1. Consider the corresponding local region

2. Compute a value for each grid point (using a filter)

3. Aggregate the so-obtained values (sum up)

e Can we apply this idea to graphs?

Yes! For each vertex:

> Consider the 1-hop neighborhood of the vertex

» Compute a value for each vertex (and the corresponding edge) in
the 1-hop neighborhood

> Aggregate the so-obtained values (e.g., sum up)

The resulting operation is called spatial convolution

» Graph neural networks (GNNSs) using this operation are called
message-passing graph neural networks (MPNNs)

19/43

Vertex-centric programming

We can express message passing operations using a framework
known as vertex-centric programming.

1. Define four functions

> INIT(v): initial vertex values

> MESSAGE(u,v): value passed along edge u — v

> AGGREGATE(v, M): aggregate a set of messages

> UPDATE(v, a): update vertex value given an aggregate

2. Assign an initial value 20 = INIT(v) to each vertex v € V

3. Perform message passing to compute Z) from Z(-1

1: foreachv eV

2: MY, {m&l)_w Cf Message® (u,v): (u,v) € E}
3 al « Acarecare® (v, MY,
4 29« Uppare® (v, all)

4. Optionally: repeat message passing multiple times (potentially
using different MESSAGE, AGGREGATE, UPDATE functions)

20/43

https://dl.acm.org/doi/10.1145/2818185

Message-passing neural networks (MPNNs)

® Many graph algorithms can be expressed using message passing;
e.g., shortest paths, number of connected components, PageRank

® An MPNN consists of multiple consecutive MPNN layers
> Input: vertex embeddings Z(!~1) ¢ Rn*Z
» Qutput: contextualized vertex embeddings zW ¢ rnxz
» Common (and perhaps confusing): terms GNN and GCN also used
to refer to MPNNs in literature

® Each MPNN layer performs message passing using learned functions
» Typically: learned MESSAGE
> Sometimes: learned INIT, AGGREGATE and/or UPDATE
» Usually small subnetworks with a prefined architecture (e.g.,
GraphSAGE, MPNN, GAT, and GIN)
P Separate set of parameters for each layer

e Given an MPNN architecture, learning/prediction as discussed

21/43

https://en.wikipedia.org/wiki/PageRank
https://arxiv.org/abs/1706.02216
https://arxiv.org/pdf/1704.01212v2.pdf
https://arxiv.org/pdf/1710.10903.pdf
https://arxiv.org/pdf/1810.00826.pdf

Example: GCN of Kipf and Welling (2017)

e Kipf and Welling (2017) motivated spatial convolution as a
first-order approximation to spectral convolution

e Their spatial GCN uses: ZW = p(AZ(~DW D)
> ZW e R™7Z are vertex representations at layer [

> W c RZ*Z represents a learnable linear transformation
> ¢ is a non-linearity (e.g., ReLU)

> A is degree-normalized and symmetric adjacency matrix
m A = A+ I is adjacency matrix with self-edges
1 1

m A=D 2AD *

® We obtain (exercise):

mg)_w = mg) def (W(l))ng_l) (linear projection)
1 1
) — 0 lized)
a, ———m,, normalized sum
<1)EZM<Q Vi, Vd,
20 = ¢(aD) (non-linearity)

22/43

https://arxiv.org/pdf/1609.02907.pdf

Example: Graph Attention Networks (GAT)

e GATs use attention to aggregate over neighbors
— learned aggregation

e With single-head attention, the model is

m,, =m dof (WWOY)T 2(=1) (linear projection)

all) = Z aq(i),um(ul) (weighted average)
meml,

2 = ¢(a) (non-linearity)

° az(i)v is attention weight for message mg) fromu — v

Attention is performed over all messages in M(_l>)v

Key kgf}v is given by mq(f)ng), where || denotes concatenation
Attention scores obtained via LeakyReLU((q(l))qu(i)v)

>

>

» Query g1V is learned

4

> Attention weights via soft attention (softmax)

23/43

https://arxiv.org/pdf/1710.10903.pdf

Aggregation and expressive power

® Expressive power of MPNNs analyzed by Xu et al. (2019)

e Aggregation function plays crucial role

w
-

? .

’ o !
N ?.999
v o © L @ o

(a) Mean and Max both fail (b) Max fails (c) Mean and Max both fail

Figure 3: Examples of graph structures that mean and max aggregators fail to distinguish.

>

>

vvyvyy

Figure shows neighborhood aggregation with mean and max; colors
indicate messages (same color = same message sent)

If v (left) and v’ (right) have same aggregate (a,= a,), MPNN fails
to distinguish v from v’, even though their neighborhood differs
Mean-aggregation ignores size of neighborhood

Max-aggregation additionally ignores repeated messages
Sum-aggregation works in all the above cases (multiset)

Principled neighorhood aggregation (PRA): all of those and

more, empirically strong 2443

https://arxiv.org/pdf/1810.00826.pdf
https://proceedings.neurips.cc/paper/2020/file/99cad265a1768cc2dd013f0e740300ae-Paper.pdf

Graph isomorphism networks (GIN)

e Xu et al. (2019) showed that GINs given by
2(

mq(fLU =z (pass lower-level representation)

=(1+eD)-D 4 Z 2=V (weighted sum)
2 Veml),
2 = a6V (local computation, parameterized)

are maximally powerful among all MPNNs

> Requires that f(-8") and final readout are injective functions

» Roughly: GINs provably can produce different representations of
“many” non-isomorphic graphs

> “Many’ means: non-isomorphism between each pair of graphs can
be determined by Weisfeiler-Lehman test of isomorphism (a
heuristic test)

> No MPNN can distinguish other non-isomorphic graphs
— MPNNSs obtain same graph embeddings — same predictions (!)

® Note: In practice, MPNNs can do more (e.g., distinguish two

isomorphic graphs if they differ in their input vertex features)
25/43

https://arxiv.org/pdf/1810.00826.pdf
https://par.nsf.gov/servlets/purl/10299993

Discussion

® Spatial convolution is common approach in practice
» Relatively simple
> Can be extended to support vertex/edge/graph attributes
» Can be extended to support different types of edges (e.g., R-GCN)
» Some libraries: DGL, Jraph, PyG

® Can be readily applied to many-graphs settings / new graphs
> Natural due to use of aggregation function (vs. graph Laplacian)
» Choice matters, esp. when graph properties differ significantly
> E.g., different aggregation functions for different degrees
> E.g., use first K neighbors based on suitable vertex ordering

e Efficiency can be a concern for large graphs

> For high-degree vertices, aggregation can be expensive
» “Neighborhood sampling” methods often used

26 /43

https://arxiv.org/pdf/1806.01261.pdf
https://arxiv.org/abs/1703.06103
https://www.dgl.ai/
https://github.com/deepmind/jraph
https://pyg.org/

Example: Results of You et al. (2020) (1)

(a) GNN Design Space (b) GNN Task Space
Intra-layer Design: 4 dims Inter-layer Design: 4 dims Task Similarity Metric
V " { Anchor Model Similarity
MLP Layer . Performance ranking to Task 4
Y prz:;ss TaskA | M, | M, | Ms | M, | My 10
TaskB | M, | M3 [M, | M, | M. 0.8
layers 1 3 2 £ S
MLP Layer v TaskC | Ms | M, [M, [My | M, 04
_ Building Task Space for GNN Tasks
Dropout R GNN Layer Layer g XS Dataset
' connectivity sk bpace @ AmazonComputers
GNN Layer o Coaunorcs
Aggregation - Message ‘* . ° g““‘""'?"““
GNN Layer passing % 05 PROTEINS
layers 5 % ° BZR
Learning Configuration: 4 dims gooq®* coxz
4 oo
Batch size MLP Layer Post- o] A% ENZYMES
Learning rate process 4 ? C . ‘s“:;zme
Optimizer MLP Layer layers o @, 0 ® smalword
Training epochs ° Task-level
Y T 71 3 T @ Node-evel
(c) Best GNN Designs Found in Different Tasks "' * Gphlevel
Pre-process layers | Message passing layers | Post-process layers | Layer connectivity Aggregation
Task A: graph-IMDB 2 8 2 skip-sum sum
Task B: node-smallworld 1 8 2 skip-sum sum
Task C: node-CiteSeer 2 6 2 skip-cat mean

Figure 1: Overview of the proposed GNN design and task space. (a) A GNN design space consists
of 12 design dimensions for intra-layer design, inter-layer design and learning configuration. (b) We
apply a fixed set of “anchor models” to different tasks/datastes, then use the Kendall rank correlation
of their performance to quantify the similarity between different tasks. This way, we build the GNN
task space with a proper similarity metric. (c) The best GNN designs for tasks A, B, C'. Notice that

tasks with higher similarity share similar designs, indicating the efficacy of our GNN task space. 2743

https://dl.acm.org/doi/10.5555/3495724.3497151

Example: Results of You et al. (2020) (2)

s 2
<
o0
c >
2 -
<
g 1 14 1 10 -
o False True 2 4 6 8 skipcat_skipsum _stack
>c2 3 4 3
g9
] 3
33 2 2
<3 2
04 1 1 1
False True 0.0 0.6 prelu relu swish max mean sum 2 4 6 8 skipcat skipsum _stack
Batch Normalization Dropout Activation Aggregation Message passing layers Layer connectivity
@
=3
<
o0
c >
£< m m -—_- -_-_*
g ' 2 3 ! o, X X __ad "Ti00 200
> c3 3 3 2 3
g
5
322 2 2 2 2
<3
04 1 1 1 1 1
1 2 3 16 32 64 0001 001 01 100 200 400
Pre-process layers Post prooess Iayers Batch size Learning rate Optlmlzer Training epochs

Figure 3: Ranking analysis for GNN design choices in all 12 design dimensions. Lower is better.
A tie is reached if designs have accuracy / ROC AUC differences within € = 0.02.

28/43

https://dl.acm.org/doi/10.5555/3495724.3497151

Example: NBFNet for link prediction (1)

Neural Bellman Ford networks (NBFNet) are a method for link

prediction.

® In a single large graph with different edge types (such as
knowledge graphs or heterogeneous information networks)

® Use the labeling trick

> Label the "source vertex” for which to predict an outgoing edge
with a (learned) set of features, all other vertices with zero features

» Perform message passing with a GNN (accounting for edge types)

» Compute the dot product of the source vertex embedding to all
other vertex embeddings — the higher, the more likely a link

® Method trained to predict edges present in a given graph

® Resulting model applied to predict missing edges

29/43

https://arxiv.org/abs/2106.06935

Example: NBFNet for link prediction (2)

Table 3: Knowledge graph completion results. Results of NeuraLP and DRUM are taken from [46].
Results of RotatE, HAKE and LowFER are taken from their original papers [52, 76, 1]. Results of
the other embedding methods are taken from [52]. Since GralL has scalability issues in this setting,
we evaluate it with 50 and 100 negative triplets for FB15k-237 and WN18RR respectively and report
MR based on an unbiased estimation.

FB15k-237 WNI18RR
MR MRR H@l H@3 H@10 MR MRR H@l H@3 H@10

Path Ranking [35] 3521 0.174 0.119 0.186 0.285 22438 0.324 0276 0.360 0.406

Class Method

Path-based NeuralLP [69] - 0.240 - - 0.362 - 0.435 0371 0434 0.566
DRUM [46] - 0343 0.255 0378 0516 - 0.486 0425 0513 0586
TransE [6] 357 0.294 - - 0.465 3384 0.226 - - 0.501
DistMult [68] 254 0.241 0.155 0263 0419 5110 043 039 044 0.49

Embeddings ComplEx [58] 339 0247 0.158 0.275 0428 5261 044 041 046 0.51
RotatE [52] 177 0338 0241 0375 0553 3340 0476 0428 0492 0571
HAKE [76] - 0346 0.250 0.381 0.542 - 0.497 0452 0516 0.582
LowFER [1] - 0359 0.266 0.396 0.544 - 0.465 0434 0479 0526
RGCN [48] 221 0273 0.182 0303 0456 2719 0402 0.345 0437 0494

GNNs GralL [55] 2053 - - - - 2539 - - - -
NBFNet 114 0415 0321 0454 0.599 636 0.551 0.497 0.573 0.666

30/43

Excursion: GRNNs

® Receptive field of MPNN with K layers = K-hop
neighborhood

>
>

May not be sufficent, esp. since K often small (say, 2-8)
MPNNSs cannot solve tasks such as shortest paths or determining
the number of connected components (exercise)

e Can be mitigated; e.g., by readout/pooling or by adding
transformer layers (both coming up)

® Alternative: graph recurrent neural networks

>

vVVvyYy

v

Lift the notion of recurrence from RNNs to graphs

Hidden state = vertex features

Recurrence = an MPNN layer

Approach: apply MPNN layer repeatedly until a fix point is reached
(nothing changes anymore)

Number of layers (and hence receptive field) thus not hard-coded
— Above problems can be solved (exercise)

Used, for example, to model graph processes (fixed-structure
graphs, time-dependent features; e.g., weather station networks)

31/43

https://arxiv.org/abs/2002.01038

Outline

3. Readout and Pooling

32/43

Readout

® Recall: readout operation obtains a graph-level representation
» Generally want order invariance
> Means: vertex or edge order does not affect outcome
» Relationship to graph isomorphism problem implies that structurally
different graphs may end up with same representation

® Basic approaches
> Statistics such as element average/sum/maximum of vertex
embeddings
— May not be representative to distinguish different graphs
» Fully connected layers
— Order invariance not guaranteed, small graphs only
» Use a special “global” vertex that is connected to all vertices

e Effectiveness increased via pooling

33/43

Pooling

e Cf. CNNs: gradually decrease resolution via pooling (or strided
convolutions), then fully connected layers

> How can we perform such pooling on a graph?
® General idea: use a (hierarchical) graph clustering algorithm

> Cluster the vertices (e.g., using spectral clustering)
» Pool the embeddings of vertices of each cluster

Original Pooled network Pooled network Pooled network Graph
network atlevel 1 atlevel 2 atlevel 3 classification

Ying et al., 2018 34 /43

https://arxiv.org/pdf/1806.08804.pdf

Outline

4. Graph Transformers

35/43

Problems with message-passing GNNs

¢ Oversmoothing: (certain) deeper GNNs can perform worse than
shallower ones, since repeated neighborhood information can
“wash out” structure information (Xu et al., 2018)

e Oversquashing: as GNN depth increases, information from a
(potentially) exponential number of paths squashed into fixed-size
representations (Alon and Urav, 2021)

Bottleneck
v

input sequence

(a) The bottleneck of RNN seq2seq models (b) The bottleneck of graph neural networks
Figure 1: The bottleneck that existed in RNN seq2seq models (before attention) is strictly more
harmful in GNNs: information from a node’s exponentially-growing receptive field is compressed
into a fixed-size vector. Black arrows are graph edges; red curved arrows illustrate information flow.

e Hard inductive bias: graph structure limits model’s
computation graph

e Limited expressive power (see slides 24 and 25)

36/43

https://arxiv.org/abs/1806.03536
https://arxiv.org/abs/2006.05205

Transformers to the rescue

® |dea: Add Transformer layers to compute graph

>
>
>

v

Self-attention ~ message passing between all nodes

All vertex embeddings updated based on self-attention

Every updated vertex embedding (in principle) depends on all of the
vertices (i.e., update is global)

Avoids oversmoothing, since no (simple) neighborhood aggregation
Mildens oversquashing, since information is “distributed” across all
vertices

Avoids hard inductive bias, since computation graph not determined
by (but instead informed by) graph structure

® How to best use Transformers for graphs?

>

>

>

A direct application (Z(lfl) in, zW out) of a Transformer layer
ignores graph structure

Key question: How to incorporate graph-structure information?
— active research area

Our focus: overview of general approaches

37/43

Approach 1: Mix-in GNN layers

e Combine Transformer layers with GNNs

» GNNs: local, structure-aware
» Transformers: global, not structure-aware when applied directly

Output Output Output
T y N
Trans xN
oo
Trans GNN
T Block Block
GNN M ﬂ‘
Block X
Input Input
(a) Before Trans (b) Alternatively (c) Parallel

Min et al., 2022 38/43

https://arxiv.org/pdf/2202.08455.pdf

Approach 2: Structure-aware positional embeddings

® Recall that Transformers for NLP use positional embeddings (PE)
to encode ordering

» E.g., sine functions of varying frequency; Vaswani (2017) used

PE(pOS>2i = Sin(pos/100002i/dmode|)
PE(pos)a2i+1 = cos(pos/10()()()2i/dmode|)

> Low frequency (i large): change slowly in neighborhood
» High frequency (i small): change quickly in neighborhood

e Natural analogue for graphs are spectral embeddings (cf. 09-1

and sl. 9ff)

» Each eigenvector corresponds to a “frequency”

» Again, we use the eigenvectors associated with the smallest
eigenvalues (lower frequencies)

> E.g., directly used by Dwivedi and Bresson (2020)

» E.g., spectral attention networks by Beaini et al. (2021) (next
slide)

39/43

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/abs/2012.09699
https://arxiv.org/abs/2106.03893

Example: Spectral Attention Networks (SAN, 2021)

I Pre-computed steps 0(mE) [0 Learned positional encoding (LPE) steps 0(m>N) [l Main Transformer steps O(N?2)

Compute the first Generate node-wise Generate node-wise
a) Input h) 5 c] q d|) €] Pool the LPE
(@ P () m eigenvectors S eigenvector PE ()embeddmg 0(Nm?) (e
A: Adjacency matrix The normalized eigenvectors 4;: The i-th lowest eigenvalue For each node i, generate a Use a sum or mean pooling on
L: Laplacian matrix ¢ of L are computed and &, The normalized learned positional embedding the dimension of size m of the
N: number of nodes sorted such that g has the eigenvector associated to 4, (LPE) of size k. node-wise embedding.

lowest eigenvalue and ¢,y

E: number of edges. $,: The j-th row of ¢;

has the m-th lowest Alinear layer is applied, The result is the LPE matrix,
ng: Number of input) For each node j, generatean followed by a multi-layer where each line i represents
node features The complexity is 0(mE). initial positional encoding (PE) Transformer encoder with the learned positional
€o: Number of input edge Node colormap using the m-first ¢ and 4. self-attention on the encoding of the i-th node.
features -m& 0 MaX i a graph has less than m sequence length of size m.
0: Computation nodes, add a masked padding. 5 mxm
A 2 LPE
H
@i " . 5 H 8 Number of features k
2]
] . T n
i 2, g "WLEL
P . # 3 Nxkxm
'Y NX2xm
Fully connect the Input layers for the Concatenate node . Apply the main
(f) (8) ()] (i)
graph feature features transformer
Node features x(0 Anedgeisadded toallpairs Add an MLP orlinear layer Concatenate the node Attention between all pairs of
of di nodesand for both the node and edge features from the MLP to nodes features and the edge
X% x3 x| given its own embedding. features. those from the LPE. between them. Different
o x9 xo) linear projections K, Q, E are
T . @ o) used to compute attention for
x;” m | The size of the edge embed- X real edges and added edges.
i Xz Xwn| ding dictionary increases by
Nxng 1, and the number of edges o) Nx@=k) x®
Edge features F(®) becomes N2 d: hidden dimension
@ g® © Nxd encoders
AL PR VA x on the dimension of
) O g B0 @
21 B2z 2 | 1
i : & oN?)
A oW Nixd Prediction Output
Nix@tD layer Nxd

Figure 1: The proposed SAN model with the node LPE, a generalization of Transformers to graphs.

Beaini et al. (2021) 40/43

https://arxiv.org/abs/2106.03893

Example: SAN's experimental results
MOLHIV _

(o]

GCN 0367 £0.011 71.892 £0.334 | 68.498 +0.976 76.06 £0.97 20.20 +£0.24
GraphSage 0.398 +0.002 50.492 +0.001 63.844 +0.110 -
GatedGCN 0.282 +£0.015 85.568 +0.088 | 73.840 +0.326 - Best
GatedGCN-PE 0.214 £0.013
GIN 0.526 +£0.013 85.387 £0.136 | 64.716 + 1.553 75.58 140 22,66 £0.28
PNA - -
DGN - - -
GAT 0384 +0.007 78271 £0.186 | 70.587 +0.447 - Worst
GT (sparse) 0.226 +£0.014 84.808 +£0.068 | 73.169 + 0.662 -
GT (full) 0.598 +0.049 56482 £3.549 | 27.121 +8471
SAN

Figure 7: Comparing our tuned model on datasets from [1 , against GCN [25], GraphSage [18]

[39], GAT [37], GatedGCN [3], PNA [11], and DGN [4]. Means and uncertainties are derived
from four runs with different seeds, except MolHIV which uses 10 runs with identical seed. The
number of parameters is fixed to ~ 500k for ZINC, PATTERN and CLUSTER.

Note: Not SOTA anymore.

Beaini et al. (2021) 41/43

https://arxiv.org/abs/2106.03893

Approach 3: Modify attention mechanism

® Another approach is to restrict/modify to which other nodes each
node can attend to
> E.g., only direct neighbors (Dwivedi and Bresson, 2020)
> E.g., Graphormer uses shortest-path distances (among others) to
modify attention weights (Ying et al., 2021)

Uy Uy U3 Uy Us

[MatMul V2

t
| softMax |
t

Scale Spatial Encoding w5
v Uy U3 Uy
MatMul | L
vy Uy
I l vy |
ineas ~ Linead [inead "' v
v, vy
Q K v ‘
s
Edge Encoding
Node Feature Centrality Encoding

Figure 1: An illustration of our proposed centrality encoding, spatial encoding, and edge encoding in
Graphormer.

42/43

https://arxiv.org/abs/2012.09699
https://arxiv.org/pdf/2106.05234.pdf

Discussion

e Difficult to choose suitable approach

» E.g., some evidence for each approach in study of Min et al., 2022
> E.g., some evidence for approach 2 in study of Beaini et al. (2021)

® Scalability often a problem

> Generally ok for many small graph scenarios
> Very problematic for large graphs

® Many (!) graph learning methods have been and are still being
proposed; e.g., survey of Ju et al. (2024)
> Transformer-based, GNN-based, ...
» No golden bullet
> Extensive experimentation often required
» More comparative studies / benchmarks needed

e Stay tuned!

43/43

https://arxiv.org/pdf/2202.08455.pdf
https://arxiv.org/abs/2106.03893
https://www.sciencedirect.com/science/article/pii/S089360802400131X

Deep Learning
10 — Training Techniques

Prof. Dr. Rainer Gemulla
Universitat Mannheim

Version: 2025-1

From the tools and the models. . .

® The tools: backpropagation, optimizers, hyperparameter tuning

® The models: large, complex neural networks
> Fully-connected layer with n inputs and m units: O(nm) parameters
m 10 dense layers, each 200 inputs/units — 400k parameters
® 1 dense layer, 1M inputs, 200 units — 200M parameters
» E.g., T5 text-to-text transformer
(small: 60M, base: 220M, large: 770M, 3B, 11B)
> E.g., ConvNext for CV
(T: 60M, S: 82M, B: 121, L: 235M, XL: 391M)
> E.g., DimeNet++-XL, a GNN for modelling atomic systems
(Base: 1.8M, Large: 10.8M, XL: 240M)

° And now?
» Which training data, which training objectives, which model?
— this and, more comprehensively, related lectures (cf. slide 01/19)
P> How to train at scale?
— not in this course

2/44

https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2201.03545
https://openreview.net/pdf?id=0jP2n0YFmKG

.to the art

The art: Which training data, which training objectives, which model?

e Sufficiently expressive (i.e., large) models needed for complex
tasks

Overfitting is a severe concern
» Universal approximation theorem: with sufficiently many hidden
neurons, FNN can perform arbitrarily well on the training set

Limited labeled training data
> Large labeled datasets for the task at hand generally not available

» Supervision signal alone may be insufficient to achieve reasonable
performance

Design space is large
» Experimentation is costly
» Experience and domain knowledge is key

Generally, goals include
> Reduce overfitting, improve generalizability, reduce biases
> Leverage additional data
> Reduce (task-specific) costs such as model size, computational
costs, amount of required supervision, ... 3/44

Performance on human-evaluated tasks Performance on JSON tasks Performance on BIG-bench Lite

16

14

12

10

Normalized preferred metrics
a
3

. 4
* Ww*"’/
— 2

100 10f 108 100 1ot 107 108 108 100 10 107 100 10° 100 10%
(a) Effective parameter count (b) Effective parameter count (<) Effective parameter count
4+~ BIG-G (0-shot) - BIG-Gsparse (0) - GPT (0) - PalM(0) -—- Bestrater
—4+— BIG-G (1-shot) -#- BIG-G sparse (1) -e- GPT (1) % PaLM (1) Average rater
—— BIGG (2-shot) -» BIG-Gsparse (2) -e GPT(2) - PalM(2)
—4+ BIGG (3-shot) - BIG-Gsparse (3} -e- GPT (3)

Figure 1: Aggregate performance on BIG-bench improves with increasing model size and
increasing shot count, but all models perform poorly in an absolute sense. For sparse models,
the z axis indicates the number of non-embedding parameters active during inference. In the legend, all
parenthetical numbers indicate shot count. Each task has a unique preferred metric (Section 2.1). The
aggregate performance is the average of each task’s preferred metric normalized such that 0 represents poor
performance and 100 very good performance (see Section 3.1 for a more detailed discussion). (a) Aggregate
performance on programmatic and JSON tasks (JSON tasks are evaluated with one-shot prompting. See
Section 2.1 for details on our task types), compared with human rater performance (see Section 2.3.2). BIG-G
(see Section 2.3.1 for details on models) was evaluated on all tasks for which human performance is available
(171 tasks), and GPT was evaluated on 146 tasks. Model performance improves with scale, but remains well
below human rater baseline performance. (b) Aggregate performance on all JSON tasks with different shot
values, BIG-G and BIG-G sparse were evaluated on all 161 JSON tasks; GPT was evaluated on 156 JSON
tasks. Model performance is remarkably similar across model classes for a fixed number of parameters. (c)
Aggregate performance over BIG-bench Lite, a curated subset of 24 tasks intended for lightweight evaluation.
Results include the Pathways language models (PaLM) (Chowdhery ot al., 2022).
Srivastava et al., 2023 4/44

https://arxiv.org/abs/2206.04615

Larger models may exhibit more bias

ender religion
ambiguous broad context 9 9
0.65 0.40
0.6
<
E 0.35 0.5
0 0.60
g 0.4
v 0.30
o
g 055 (b) race_ethnicity (c) nationality
=4 0.6 0.4
(]
o
g o0 0.5 0.3
o
0.4
E 0.2
c 0.45 0.3
o d 108 10V . 109 101
(@) 107 10° 10° 10 10t ()non—embedding params — nhon-embedding params

non-embedding params

Figure 12: Bias increases with scale for BIG-bench tasks with broad or ambiguous contexts. Note that a
higher score indicates better (less biased) performance on these tasks. (a) Aggregate performance across bbq_lite,
bias_from_probabilities, diverse_social_bias, gender_sensitivity_english, muslim_viclence_bias, and
ungover decreases with model scale, indicating that larger models are more biased in the setting of broad or
ambiguous contexts. (b—e) This trend appears robust across tasks probing bias with respect to gender, religion,
race/ethnicity, and nationality (these constitute all the bias categories with more than one relevant BIG-bench task).
Un-normalized individual task scores are shown in Supplementary Figure App.3.

Srivastava et al., 2023 5/44

https://arxiv.org/abs/2206.04615

Larger models require more data

language _identification

swahili_english_proverbs Kannada
» B0 -
B / o e
3 Kl 5 —+— BIG-G Dshot
535 5 60 540 —4— BIG-G lshat
g g g —+— BIG-G 2shot
] A EE) 2. —— BIGG 3shot
FEL] ° H soverage rater
s ‘:M \' =2 = -=- Best rater
22 e \‘?, v E EE —- Random
. v .
w07 100 0 1000 108 107 e 1 1o w07 10 103 108
(a) Effective parameter count (b) Effective parameter count ((:) Effective parameter count

Figure 15: Performance on low-resource language tasks is generally low. (a) The
swahili_english_proverbs task sees performance improvements with model scale, whereas performance on

(b) kannada and (c) language_identification remains near chance.

Srivastava et al., 2023 6/44

https://arxiv.org/abs/2206.04615

Overview

Many strategies to avoid overfitting and/or improve the training
process (for a particular task) exist.

e Standard strategies, e.g.,

» Use parameter norm penalties or max-norm constraints

> Use early stopping during training (i.e., don't train until convergence)

» To some extent: use simpler models

> Not discussed here (see ML course)

® Deep learning-specific strategies; e.g.,

> Careful architecture engineering (as discussed)
(e.g., sparse connections, residual connections, parameter tying,
deep over wide, normalization, ...)

> Data augmentation: create additional training data

» Pretraining and fine-tuning: start from “suitable” model & adapt
it for task at hand

» Prompting: use one model for many tasks

7/44

Outline

1. Data Augmentation

8 /44

Class-preserving transformations

e Data augmentation: add generated data to training data
» Aims to combat data scarcity
» Often based on available training data
» Fully automatic
» When done well, can dramatically reduce the generalization error

® Example: Class-preserving transformations

> Given labeled example (x,y), create augmented example (Z,y)
such that and x (likely) belong to the same class

» Increases invariance of model to such transformations

> E.g., in CV: crop/rotate/shift/scale, color space, filters, synthesis,

» E.g., in NLP: insertion/deletion/swaps, synonyms/paraphrasing,
back translation, ...

9/44

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0
https://arxiv.org/abs/2105.03075

Mixup augmentation

¢ Given two labeled examples (x1,y1) and (22, y2), create mixup
example (&,7) such that
» 7 “lies between” x; and x5
> ¢ “lies between” y; and yo
® Helps to “smoothen” decision boundaries
e Example: linear mixup
> Inputs (e.g., grid data) and labels (e.g., one-hot encoded class) are
real-valued vectors
> Given mixup ratio A € [0, 1], interpolate linearly:

ERM mixup
s v e oy BN e,
X K .,
. . ‘s
p R @ :
:
K3 ‘: % ::
Va .o Vu, o
e g PN

(b) Effect of mixup (« = 1) on a
toy problem. Green: Class 0. Or-
ange: Class 1. Blue shading indicates
ply =1[z).

10/ 44

https://arxiv.org/abs/1710.09412
https://medium.com/data-science/enhancing-neural-networks-with-mixup-in-pytorch-5129d261bc4a

Masking

e Masking means to “hide” information during training
1. E.g., parts of input data
2. E.g., some (parts of) higher-level part representations
3. E.g., some (parts of) model weights

® Model then less reliant on specific information; e.g.,
1. Encourages model to not focus on a small part of the input &
model learns to handle missing data &
impact of spurious correlations may be reduced
2. Encourages model to not rely on a small subset of features
3. Encourages model to not rely on a small set of weights
e Often performed stochastically
® How to hide a part? E.g.,
» Zero out part
» Replace part by its mean
» When part is categorical (e.g., a token in LLMs), set it to a special
MASK category (e.g., a MASK token)
® When done well, can provably and empirically reduce

generalization error 11/ 44

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00335/96483/An-Empirical-Study-on-Robustness-to-Spurious
https://openreview.net/forum?id=25kAzqzTrz

Spurious correlations

Spurious correlations means that model exploits features
associated with but not causally related to output.

Source tag
present

!

Classified
as horse

No source
tag present

}

Not classified
as horse :

2/44

https://www.nature.com/articles/s41467-019-08987-4

Dropout

® Dropout randomly zeros-out
activations of inputs/hidden
layers during training (e.g., 80%
of input, 20% of hidden layer)

® Forces network to be accurate
even in absence of some
information

® Do the same during inference
(multiple times) or use weight
scaling heuristic (by inverse
dropout probability)

® (Can be seen as approximation
of bagging (with parameter
sharing)

Oy
©

O,
ﬁee
}
©56) 636
o © e;’“o
6
@
®
0| 5@

©)
?G
©)
©) eee
@“%e

®

uia
@

Ensemble of subnetworks

Base network

oo e

Figure 7.6: Dropout trains an ensemble consisting of all sub-networks that can be
constructed by removing non-output units from an underlying base network. Here, we
begin with a base network with two visible units and two hidden units. There are sixtees
possible subsets of these four units. We show all sixteen subnetworks that may be formed
by dropping out different subsets of units from the original network. In this small example,
a large proportion of the resulting networks have no input units or no path connecting
the input to the output. This problem becomes insignificant for networks with wider
layers, where the probability of dropping all possible paths from inputs to outputs becomes
smaller.

avy o

http://jmlr.org/papers/v15/srivastava14a.html

Noise injection

® Noise injection perturbs inputs/activations/weights/targets
» To make network more robust to noise
> To alleviate overfitting to noise in training data

e Example: dropout (as discussed)

® Example: label smoothing
> Replace classification targets (e.g., {0,1}) by smoothed versions

(e.g. {e1—¢€})
» Prevents extreme predictions
> Alleviates impact of incorrect labels (label noise)

14 /44

http://jmlr.org/papers/v15/srivastava14a.html

Adversarial training

® Adversarial example

+ 007 x

. x +
v SEn(Vad (0.2:9)) 00(9,.7(0,2,4))
y =“panda’ “nematode” “gibbon”
w/ 57.7% w/ 8.2% w/ 99.3 %
confidence confidence confidence

Figure 7.8: A demonstration of adversarial example generation applied to GoogLeNet
(Szegedy et al,, 2011a) on ImageNet. By adding an imperceptibly small vector whose
elements are equal to the sign of the elements of the gradient of the cost function with

respect to the input, we can change GoogLeNet’s classification of the image. Reproduced
with permission from Goodfellow ef al. (2014D).

e Adversarial training: augment training data with adversarial
examples

» Increase model robustness

> Defend against adversarial attacks
> May be expensive

15/ 44

https://arxiv.org/pdf/1904.12843.pdf

Outline

2. Pretraining and Fine-Tuning

16 /44

Pretrained models

Success of deep learning to a large extent based on collecting and
leveraging large amounts of data (and compute) to obtain
pretrained models.

® General approach
» Train powerful model on “available” data and carefully-chosen tasks
instead of actual the target task
> Customize model for task at hand (e.g., fine-tuning, prompting)

» Often reduces task-specific cost and improves model
performance

e Many pretrained models available; e.g., for language (T5,
RoBERTa, Mistral 7B) or vision (EfficientNet, Stable Diffusion)
or tabular data (TabPFN) or time series (Chronos)

® Many private; trained models are a business asset

> Provide API services + usage-based pricing model
» GPT-4, Gemini, DALL-E 3, ...

17/ 44

https://huggingface.co/docs/transformers/en/model_doc/t5
https://huggingface.co/FacebookAI/roberta-base
https://mistral.ai/news/announcing-mistral-7b/
https://pytorch.org/hub/nvidia_deeplearningexamples_efficientnet/
https://stablediffusionweb.com/
https://github.com/PriorLabs/TabPFN
https://www.amazon.science/code-and-datasets/chronos-learning-the-language-of-time-series
https://openai.com/index/gpt-4-research/
https://gemini.google.com/
https://openai.com/index/dall-e-3/

Feature detectors and prediction heads

e Consider a supervised learning task

» Inputs X, outputs Y

» “Small” training set D C X x Y

® Given a model architecture, let's divide it into a part that
extracts features and part that predicts based on these features

Feature

reX —
detector

z

® Division such that

Prediction
head

HyGJ)

1. Feature detector (backbone, base model) performs most of the
“heavy lifting” and provides suitable features for prediction
2. Prediction head is simple (e.g., softmax layer or a small MLP)

e Cf. lecture 02-1 on embeddings

18/ 44

Key idea of pretraining

T e X —

® Key idea of pretraining

Feature
detector

Prediction
head

1. Learn feature detector using auxiliary data and/or tasks

— Pretrained model

2. Learn prediction head using task-specific data D

— Model for downstream task

e Why pretrain?

1. Make use of auxiliary data

2. Less labeled data and computational cost to train prediction head
3. Can train different prediction heads for different (but related) tasks
4. Powerful base models available for certain tasks; e.g.,

https://paperswithcode.com/

https://modelzoo.co/

https://www.tensorflow.org/hub

https://pytorch.org/hub/

https://huggingface.co/models

19/ 44

https://paperswithcode.com/
https://modelzoo.co/
https://www.tensorflow.org/hub
https://pytorch.org/hub/
https://huggingface.co/models

Fine-tuning

e Without fine-tuning: train only head in supervised fashion

Feature z Prediction
€Tr ——» > F—— Y
detector head
Directly use Learn from
pretrained model scratch

> Need labeled data
» But less challenging when feature detector suitable: can get away
with relatively simple predictor and less training data

e With fine-tuning: also retrain (parts of) feature detector

Feature z Prediction
- , .
detector head
Initialize with Learn from
pretrained model scratch

> More expensive, but can improve feature detection for actual task
» Higher risk of overfitting
20/ 44

Pretraining data

¢ |abeled data; e.g.,

> Labeled images (ImageNet, COCO, Visual Genome)
> Task collections (BIG-bench)

Paired data
> Images and text (PMD, LAION-5B)
> Parallel multilingual text corpora (OPUS)

Unlabeled data

> Textual data such as web data (CommonCrawl, WebText) or books
(BookCorpus, Wikipedia)

> Social media data (Twitter, Reddit, Stack Overflow)

» Source code (GitHub)

>

Multimodal data such as text interleaved with images
> Knowledge graphs (Wikidata, DBpedia)

Synthetic data
> Generated to model reasonable data distributions (e.g., TabPFN,
Rendered.ai, self play, digital twins)

21/ 44

https://opus.nlpl.eu/
https://github.com/PriorLabs/TabPFN
https://rendered.ai/
https://en.wikipedia.org/wiki/Self-play
https://en.wikipedia.org/wiki/Digital_twin

Unsupervised pretraining

e Unsupervised pretraining
> Based on (additional) unlabeled data Dypiapeled € X

> Suitable when (useful) unlabeled data are readily available

® Example: unsupervised pretraining using an autoencoder
» Encoder serves as pretrained feature detector

» Decoder thrown away afterwards

Pretraining (on Dynlabeled)

z .
x e X — Encoder > Decoder [—x e X
l
use as !
Y
Feature z Prediction
reX — —y ey
detector head Y

Training (on D)

® Hope that features are more useful for downstream tasks (e.g,
feature detector may perform dimensionality reduction)

22 /44

Supervised pretraining

® Supervised pretraining
> Based on additional labeled data Dpe € X X Vpre

> Suitable when (useful) data for a different but related task is

available

T e X —

reX —

Pretraining (using Dpre)
Feature z Prediction
— Yy < ypre
detector el
T T -
use as | optionally:
v +initialize with
Feature z Prediction
—yecy
detector head

Training (using D)

23 /44

Example: CV models pretrained on ImageNet data

https://www.image-net.org/

fperson

helmet

motorcycle

® 10,000,000 labeled images depicting 10,000+ object categories

® Pretrain using popular ILSVRC 2012-2017 image classification
and localization task

24 /44

https://www.image-net.org/
https://www.kaggle.com/c/imagenet-object-localization-challenge/overview/description

Self-supervised pretraining

e Self-supervised methods use unlabeled data D pjabeled tO
automatically build supervised prediction tasks
» Cf. autoencoder
> But: well-designed, domain-specific self-supervised tasks often more
powerful — key ingredient of state-of-the-art models

e Generally, mask-and-reconstruct tasks very powerful
» Mask: as discussed, hide part of the input (tokens in text, parts of
images, cells in tables, vertices/edges in graphs)
» Reconstruct: train model to model predict the masked part

® E.g., for NLP: mask-and-reconstruct tokens in input text
> Language model (LM): provide prefix, predict next token(s)
> Masked language model (MLM): provide input with some
intermediate tokens masked out, predict the masked tokens

» Models that perform well on these tasks are very powerful

m Albert Einstein was born in ? (factual knowledge)

B | like to eat 7 (common sense knowledge)

® All humans are mortal. Socrates is human.

Therefore Socrates is 7 (reasoning)

25/ 44

Example: BERT (pretraining)

ﬁsp Mask LM Mask LM \
_r s *

[T—«] m Tiser) m m
BERT
E[CLS] E1 ‘ I E || E[SEPI || E’ | | EM’ |
il g e B e
EE EEE G
_'_1 _l_l
Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair

(NSP = Next Sentence Prediction, another self-supervised task)

Devlin et al., 2018 26 /44

https://arxiv.org/pdf/1810.04805v2.pdf

Example: BERT (fine-tuning)

@ /@@AD

Start/End Spam

*———

P BERT

e] (e[l e] [&]

S i e e

(o) (o)

(o) (o)) . ()

_l_l

_'_l

Question Paragraph
\\\ Question Answer Pair /

(SQUAD is reading comprehension benchmark)

Devlin et al., 2018

27 /44

https://rajpurkar.github.io/SQuAD-explorer/
https://arxiv.org/pdf/1810.04805v2.pdf

Example: GPT

® GPT models are pretrained using language modelling (left)

® QObserve: downstream tasks expressed in “textual” form as well
(right, cf. slide 38)

Text S "
chit| Cisscaton [“san | To | ewaa || Transiomer - tinear |

Entaiment | san | Premise | Deim | Hypothesis | Extact H—| Transformer

®

Feed Forward I

Self Attention
Multiple Choice [st | Context | peim | Answer2 [Exvact |H

[| Comma [oo [w4

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

[(san | Toas | oo | Tonz | oea]|
Similarity

| aaar]

12x

[[stan | Textz [peim [Text1 |Exuam|}-|

[s [context | peim | Answer1 | Extact H—-|

28/ 44

Example: TURL, Grover

TURL for tabular data

input Tokens

Input Entities

input table | ["national film award | [o] [vear] [recipient] [§ § [zsth1] [isatvai] [[] [Tzt] [ivieina] [
word Iz | 7o N e | o | I 7 | 8 R sy | e O | I e |
I_u""“‘ l_IEE‘S"“"‘-"V’ Dl_LI_IEE 10th) LM (mask] B :::::dding
twpe I e | e | o e | e |) e | e | o | e | e |
A | I | 2 2 I | |
L 11 11 =] 11 15 11 15 [11 15
[recipient [[1;n1] [savait] — [a7zehy] [ivrinall

GROVER for molecular graphs

Graph-level motif prediction

Contextual property prediction (node/edge level task)

Input molecule

Molecular graph

Contextual property extraction

node-based

A, A 188

k=1

edge-hased

/;\A(”\? .

Subgraph masking

masked part

Prediction

A

representation

Semantic motifs from
domain knowledge

Graph-level Prediction

W r-c=N

representation

Deng et al., 2020; Rong et al., 2020

Figure 2: Overview of the designed self-supervised tasks of GROVER.

29 / 44

http://www.vldb.org/pvldb/vol14/p307-deng.pdf
https://arxiv.org/abs/2007.02835
http://www.vldb.org/pvldb/vol14/p307-deng.pdf
https://arxiv.org/abs/2007.02835

Contrastive Learning

e Contrastive learning is a form of self-supervised learning

» Roughly: learn to compare two inputs

» Trained to discriminate similar inputs (positives) and dissimilar
inputs (negatives)

> Choice of training examples very important

® Example: Siamese neural networks (also called: bi-encoder)

» Use the same neural network on each input to obtain features
> Followed by a simple comparison (e.g., cosine similarity)
— Good models assign similar features to similar inputs

e Use contrastive model as feature detector (as before)

» Drop the “comparison” part, keep the rest
» Fine-tune afterwards

¢ Also: use directly (metric learning)
> E.g., use for classification (as in a nearest-neighbor classifier)
> E.g., use for information retrieval (as in nearest neighbor search)
> E.g., use for one-shot learning (only one example for class) or
few-shot learning

30/ 44

https://arxiv.org/abs/2010.05113
https://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network.pdf

Example:

Koch et al.,

2015

One-shot learning with Siamese networks

“cow" “cow"
n (’ same (speaker #1) (speaker #2)

o q\m‘

. “cow" “cat"
different (speaker #1) (speaker #2)

“can" “can”

- m same (speaker #1) (speaker #2)
3 . “can” “cab"

- & different (speaker #1) (speaker #2)

Verification tasks (training)

same

different

same

different

poe » =
% 4 “cot" “cob" "cog"

s speaker #4) (speaker #4) (speaker #4)
| \§ s (sp) (sp) (sp)

“cob”
(speaker #3)

N N
»

One-shot tasks (test)

31/44

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

Example: SimCLR

® Train without labels: each batch consists of two augmentations
of each of N images

® Model trained to determine corresponding augmentations

axq b
P 2\
o) |
|
[

Encoder e(-)

Representations [+ v, vy v, v, | vy

Pro;ectlon head /()

Metric +
z
embeddings Z"' ” W Wz

Contrastive loss
Le-Khac et al., 2020 32/44

Samples

Views

https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2010.05113

Fine-tuning and overparameterization

® Fine-tuning large models is costly

> A separate model (updated base model + prediction head) is
obtained for each task
» Base models are large

® Can we reduce this cost? Goals:

> Retain good performance (quality, fine-tuning/inference cost)
> Allow task-specific fine-tuning (i.e., individually, not multi-task)
» Small number of parameters per task

e Key insight: base models are often overparametrized
> |ottery ticket hypothesis: “dense, randomly-initialized, feed-forward
networks contain [small] subnetworks (winning tickets) that—when
trained in isolation—reach test accuracy comparable to the original
network in a similar number of iterations”
» Consequently, fine-tuned models are also overparametrized
Can be exploited indirectly to prune trained networks
> Can be exploited directly to reduce cost of fine-tuning

v

33/ 44

https://arxiv.org/abs/1803.03635
https://jmlr.org/papers/volume22/21-0366/21-0366.pdf

Low-cost fine-tuning

® Adapter layers
> Before fine-tuning, inject (residual) adapter layers at certain places
> Typically a bottleneck — few parameters
> Initialized randomly, then fine-tuned (original weights remain frozen)

¢ Low-rank adaptation (LoRA)

» Only learn updates to the model weights (plus all biases)

» Update is low-rank matrix = down-, then up-project — bottleneck

> Similar to adapters, but linear and at different location (e.g., on
weights in multi-head attention layer)

> Leads to a residual update of outputs for linear layers — can be
computed in parallel (i.e., compute update of output while
computing the base models’ output)

® Simple baseline: BitFit
» Only retrain bias weights

34 /44

https://arxiv.org/pdf/1902.00751
https://arxiv.org/pdf/2106.09685
https://arxiv.org/abs/2106.10199

Adapter layers

Injected adapter layers Adapter layer

Transformer
Layer

2x Feed-forward
layer

Feedforward
down-project

Multi-headed
attention

Total num - Trained ‘COLA SST MRPC STS-B QQP MNLI, MNLInm

params params / task QNLL RTE | Total
BERTLARGE 9.0x 100% 60.5 94.9 89.3 87.6 721 86.7 85.9 91.1 70.1 | 80.4
Adapters (8-256) | 1.3x 3.6% 59.5 94.0 89.5 86.9 718 84.9 851 90.7 T7L5 | 80.0
Adapters (64) 1.2x 2.1% 56.9 94.2 89.6 873 TL8 85.3 84.6 914 68.8 | 79.6

Table 1. Results on GLUE test sets scored using the GLUE evaluation server. MRPC and QQP are evaluated using F1 score. STS-B is
evaluated using Spearman’s correlation coefficient. CoLA is evaluated using Matthew’s Correlation. The other tasks are evaluated using
accuracy. Adapter tuning achieves comparable overall score (80.0) to full fine-tuning (80.4) using 1.3 x parameters in total, compared to

9x. Fixing the adapter size to 64 leads to a slightly decreased overall score of 79.6 and slightly smaller model.

35/ 44

LoRA

Pretrained

Weights A and B are learned during fine-tuning

A= RdXd

f—‘ﬁ
) —
Model & Method |# Trainable

Parameters| MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
ROByyse (FT)* 125.0M| 87.6 948 90.2 63.6 928 919 787 912 864
RoBupase (BitFit)* 0.1M| 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 852
RoBhase (AdptD)* 0.3M[87.140 94241 88.5411 60.844 93.141 90240 71.5427 89.7+3 84.4
RoBhpase (AdptD)* 09M (87341 94.74+3 88.44+1 62.6+9 93.042 90.61+0 759422 90.3+, 854
ROBpase (LORA) 0.3M[87.5+3 95.1+2 89.7+7 6344112 93.3+3 90.8+.1 86.6+7 91.5., 87.2
RoBiarge (FT)* 355.0M| 90.2 964 90.9 68.0 947 922 86.6 924 889
RoBiage (LORA) 0.8M[90.64> 96245 90.9+1> 682119 94913 91.641 874125 92.6:, 89.0
RoBiarge (AdptP)T 3.0M|90.2+3 96.1+3 90.2+7 68.3+10 94.8+> 91.9+; 83.8429 92.1+7 884
ROBiae (Adpt’)f 0.8M[90.5+3 96.6+2 89.7+12 67.8425 94.8+3 91745 80.1420 91.9+4 879
RoBiarge (AdptH)T 6.0M[89.9+5 96243 88.7+29 66.5+44 94.7+2 92141 834411 91.04,7 87.8
ROBirge (Adpt“)’[0.8M[90.3+3 96345 87. 7117 663120 94745 9154 729459 91515 86.4
RoBiarge (LORA)T 0.8M[90.6+> 96.2+5 90.2+10 682419 94.8+3 91.6+> 85241, 92.3+5 88.6
DeBxx. (FT)* 1500.0M| 91.8 972 92.0 720 96.0 927 939 929 O9l1.1

DeBxx. (LoRA) 47M (91915 96917 92.616 724111 96.0L; 929, 949.4 93.0., 913 36 /44

Outline

3. Prompting

37/44

Prompting

e Alternative approach: prompting
> Use a generative foundation model = a powerful general-purpose
model trained on large amounts of data and suitable for a wide
variety of tasks
» No fine-tuning

® Example: GPT-3 and successors
» Model input: description of data/task in textual form (prompt)
» Model output: answer in textual form

Prompt Prompt
Classify the sentiment in these tweets: ##### Translate this function from Python into Haskell
Python
1."I can't stand homework"
2. "This sucks. I'm bored &" def predict_proba(X: Tterable[str])
3."T can't wait for Halloween!!!" return np.array([predict_one_probasi(tweet) for tweet in X])
4."My cat is adorable @ @
5."T hate chocolate" #it# Haskell

Tweet sentiment ratings:

Sample response

Sample response predict_proba :: [String] -> [Probability]

predict_proba = map predict_one_probas.
1. Negative
2. Negative
3. Positive
4. Positive
5.Negative

OpenAl examples 38 /44

https://arxiv.org/pdf/2005.14165.pdf
https://platform.openai.com/examples

Prompting (multi-modal)

Example: Kosmos-1 multimodal large language model

Huang et al

-

What's in this picture?

Looks like a duck.

That's not a duck. Then
what’s it?

Looks more like a
bunny.

Why?

It has bunny ears.

Description of three toed
woodpecker: It has black
and white stripes
throughout the body and a
yellow crown.

Description of downy
woodpecker: It has white
spots on its black wings
and some red on its crown.

Here are eight images:

+@®

Question: what is the

The following image is:
name of the
woodpecker in the

& s. c
picture? D E F
Downy [I IZI ‘

Figure 1: KOSMOS-1 is a multimodal large language model (MLLM) that is capable of perceiving
multimodal input, following instructions, and performing in-context learning for not only language
tasks but also multimodal tasks. In this work, we align vision with large language models (LLMs),
advancing the trend of going from LLMs to MLLMs.

(2023)

39/ 44

https://arxiv.org/abs/2302.14045

Prompt/answer engineering

® Performance can heavily depend on how prompts and answers are
written — prompt/answer engineering

® General approach:

Name Notation Example Description
Input x I love this movie. One or multiple texts
Qutput Yy ++ (very positive) Output label or text

A function that converts the input into a

Prompting . . specific form by inserting the input & and

Function Joompi(®) (%] Overall, it was a [Z] movie. adding a slot [2] where answer z may
be filled later.

Prompt x’ I love this movie. Overall, it was a [Z] movie. A text where [X] is instantiated by input

@ but answer slot [Z] is not.

Filled Prompt ~ fan(z’,z) Ilove this movie. Overall, it was a bad movie. A prompt where slot [2] s filled with

any answer.
Answered fau(z’,z*) Ilove this movie. Overall, it was a good movie. A prompt where slot [2] s filled with a
Prompt true answer.
Answer z “good”, “fantastic”, “boring” A token, phrase, or sentence that fills [Z]

Table 2: Terminology and notation of prompting methods. z* represents answers that correspond to true output y*.

® More in survey of Lie et al. (2021)

Lie et al. (2021) 40/ 44

https://arxiv.org/pdf/2107.13586
https://arxiv.org/pdf/2107.13586

Examples of prompt engineering

® In-context learning (see next slide)

> Provide examples and/or background information for task with
prompt

> Typically just a few examples — a form of few-shot learning

> Choice of examples matter — selection can be key

» More in survey of Dong et al. (2023)

¢ Chain-of-thought prompting

» Decompose multi-step problems into individual steps

» Provide individual steps with demonstrations

> Generate steps along with actual answer for new inputs

> More in survey of Chu et al. (2023)

» Modern “reasoning models” do this directly (via a scratchpad)
° M

uch more in: |IE 868 Large Language Models and Agents

41/44

https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2309.15402

Brown et al.

eciate 1

changes h
wanted and

d changes ha that you
u wanted and
be more than happy to wo
I’d be more than happy to
u’re looking for and

nice J.I you could share s e) did
Gﬂ:ﬂ English output: Please pruvld.a me with a brief dps::rlphlun of 'hha design you’re

locking for and that would be nice if you could share some examples or projects you have
done before.

Poor English i patient u

Good English outpub The patient died.

Poor Eng h input We think that Leslie likes ourse

Good English output: We think that Leslie likes us.

Poor Eng hoi et broke Bill on inger

Good English outpub Janet broke Bill’s finger.

Figure 3.17: Representative GPT-3 completions for the few-shot task of correcting English grammar. Boldface
is GPT-3’s completions, plain text is human prompts. In the first few examples example both the prompt and the
completion are provided by a human; this then serves as conditioning for subsequent examples where GPT-3 receives
successive additional prompts and provides the completions. Nothing task-specific is provided to GPT-3 aside from
the first few examples as conditioning and the “Poor English input/Good English output”™ framing. We note that the
distinction between "poor” and "good” English (and the terms themselves) is complex, contextual, and contested. As
the example mentioning the rental of a house shows, assumptions that the model makes about what “good” is can even
lead it to make errors (here, the model not only adjusts grammar, but also removes the word “cheap™ in a way that aliers
meaning).

(2020)

42 /44

https://arxiv.org/pdf/2005.14165.pdf

Example: chain-of-thought prompting

Standard Prompting

\

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

J

A: The answer is 27. x

Chain-of-Thought Prompting

vt ~

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
gach is 6 tennis balls. 5+ 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

J

_
_

answer is9. o

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic,
commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

43 /44

Discussion

® Pretraining is often instrumental to good performance

> Esp. in NLP (exploit large textual corpora) and CV (exploit

resources such as ImageNet) or both

Generally, hope that pretrained model useful for actual task
Strong empirical evidence

Pretraining task/data very important (e.g., avoid spurious correlations)
> Used via fine-tuning for task or prompting

vVvYy

® Related: transfer learning

> Transfer learning: exploit model trained on different (but related)
domain or task for actual task

» E.g., pretrain model on related domain, then fine-tune on actual
domain

® Related: multi-task learning

» Simultaneously train for multiple tasks using a shared model

> E.g., shared feature detector, task-specific prediction heads

» Can improve data efficiency, reduce overfitting, and speed up
learning

44/ 44

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00335/96483/An-Empirical-Study-on-Robustness-to-Spurious
https://arxiv.org/abs/1911.02685
https://arxiv.org/abs/2009.09796

	01 Introduction
	02 Feedforward Neural Networks
	02-1 Embeddings
	02-2 Feedforward Neural Networks
	02-3 Linear Layers
	02-4 Non-Linear Layers
	02-5 Multi-Layer Perceptrons

	03 Gradient-Based Training
	03-1 Backpropagation
	03-2 Optimizers
	03-3 Architecture Design
	03-4 Initialization

	04 Layers for Categorical Data
	04-1 Embedding and Softmax Layers
	04-2 Word Vectors (Example)
	04-3 Softmax with Many Classes

	05 Part Embeddings
	06 Convolutional Neural Networks
	07 Recurrent Neural Networks and Structured State Space Models
	08 Attention and Transformers
	09 Graph Learning
	09-1 Spectral Embeddings
	09-2 Deep Learning for Graphs

	10 Training Techniques

	pbs@ARFix@1:
	pbs@ARFix@2:
	pbs@ARFix@3:
	pbs@ARFix@4:
	pbs@ARFix@5:
	pbs@ARFix@6:
	pbs@ARFix@7:
	1:
	pbs@ARFix@1:

	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@15:
	pbs@ARFix@16:
	pbs@ARFix@17:
	pbs@ARFix@18:
	pbs@ARFix@19:
	pbs@ARFix@20:
	pbs@ARFix@21:
	pbs@ARFix@22:
	pbs@ARFix@23:
	2:
	pbs@ARFix@1:

	3:
	pbs@ARFix@1:

	pbs@ARFix@24:
	4:
	pbs@ARFix@1:

	5:
	pbs@ARFix@1:

	6:
	pbs@ARFix@1:

	7:
	pbs@ARFix@1:

	8:
	pbs@ARFix@1:

	9:
	pbs@ARFix@1:

	10:
	pbs@ARFix@1:

	pbs@ARFix@25:
	pbs@ARFix@26:
	pbs@ARFix@27:
	pbs@ARFix@28:
	pbs@ARFix@29:
	pbs@ARFix@30:
	pbs@ARFix@31:
	pbs@ARFix@32:
	pbs@ARFix@33:
	pbs@ARFix@34:
	pbs@ARFix@35:
	pbs@ARFix@36:
	11:
	pbs@ARFix@1:

	pbs@ARFix@37:
	pbs@ARFix@38:
	pbs@ARFix@39:
	pbs@ARFix@40:
	pbs@ARFix@41:
	pbs@ARFix@42:
	pbs@ARFix@43:
	12:
	pbs@ARFix@1:

	pbs@ARFix@44:

