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Artificial Neural Network (ANN)

• A powerful family of models inspired by biological neural networks
▶ Hope: should be good at what humans are good at
▶ Many relationships to what we learned so far (in the ML course)

• Studied to
▶ Understand how the brain works (connectionism, not covered here)
▶ Build learning machines

• Usually, ANNs have an “input layer” and an “output layer”; they
are used for a variety of learning tasks
▶ Classification, regression, prediction, clustering, . . .
▶ Feature generation / dimensionality reduction
▶ Supervised, semi-supervised, few-shot, unsupervised
▶ Generative, discriminative

• Deep learning = ANN with multiple “hidden” layers
▶ Deep does not always mean many hidden layers
▶ Tremendous success across many applications in recent years
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Feedforward neural networks
We start with simple FNN architectures and their relationship to
models we know:
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FNNs can get much more complex. . .
Example architectures for image classification tasks
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. . . and larger. . .

5 / 20lifearchitect.ai, 2025

https://lifearchitect.ai/models/


. . . and more powerful

text-to-image (DALL-E 1/2)

text-to-text, few-shot learning (GPT-4)

6 / 20

https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2204.06125
https://openai.com/research/gpt-4


. . . and more expensive

As of May 2024; italic = estimate at that time 7 / 20lifearchitect.ai, 2025

https://lifearchitect.ai/models/


Key concept: Embeddings
• Embeddings are learned dense, continuous, low-dimensional

representations of objects
▶ Useful to represent complex objects and/or parts of objects

(categorical, text, time series, audio/image/video, graph, tables, . . . )
▶ Think: complex to work with objects, simple to work with embeddings

• Example: Top-30 closest word vectors to “God”, trained on the Bible

8 / 20textminingonline.com

http://textminingonline.com/dive-into-nltk-part-x-play-with-word2vec-models-based-on-nltk-corpus


Recurrent neural networks (RNN)
• Recurrent neural networks (RNN) are a family of neural

networks for processing sequential data
▶ Time series data (e.g., sequences of sensor readings)
▶ Natural language text (e.g., sequences of characters of words)
▶ Audio signals (e.g., sequences of amplitudes)
▶ Images (e.g., sequences of pixels or rows)
▶ Videos (e.g., sequences of frames)
▶ Actions (e.g., movement of pen)
▶ . . .

• Example: DeepAR for probabilistic forecasting
▶ Focus: scenarios with many related time series

(energy consumption of individual households, demand of products)
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Figure 3: Example time series of ec. The vertical line separates the conditioning period from the
prediction period. The black line shows the true target. In the prediction range we plot the p50 as
a blue line (mostly zero for the three slow items) and the 80% confidence interval (shaded). The
model learns accurate seasonality patterns and uncertainty estimates for items of different velocity
and age.

item variances). However, scaling by the average value νi = 1 + 1
t0

∑t0
t=1 zi,t, as we do in our

experiments, is a heuristic that works well in practice.

Secondly, due to the imbalance in the data, a stochastic optimization procedure that picks training
instances uniformly at random will visit the small number time series with a large scale very infre-
quently, which result in underfitting those time series. This could be especially problematic in the
demand forecasting setting, where high-velocity items can exhibit qualitatively different behavior
than low-velocity items, and having an accurate forecast for high-velocity items might be more im-
portant for meeting certain business objectives. To counteract this effect, we sample the examples
non-uniformly during training. In particular, in our weighted sampling scheme, the probability of
selecting a window from an example with scale νi is proportional to νi. This sampling scheme is
simple, yet effectively compensates for the skew in Fig. 1.

3.4 Features

The covariates xi,t can be item-dependent, time-dependent, or both.3 They can be used to provide
additional information about the item or the time point (e.g. week of year) to the model. They can
also be used to include covariates that one expects to influence the outcome (e.g. price or promotion
status in the demand forecasting setting), as long as the features’ values are available also in the
prediction range. In all experiments we use an “age” feature, i.e., the distance to the first observation
in that time series. We also add day-of-the-week and hour-of-the-day for hourly data, week-of-year
for weekly data and month-of-year for monthly data.4 Further, we include a single categorical item
feature, for which an embedding is learned by the model. In the retail demand forecasting data sets,
the item feature corresponds to a (coarse) product category (e.g. “clothing”), while in the smaller
data sets it corresponds to the item’s identity, allowing the model to learn item-specific behavior. We
standardize all covariates to have zero mean and unit variance.

4 Applications and Experiments

We implement our model using MXNet, and use a single p2.xlarge AWS instance containing 4 CPUs
and 1 GPU to run all experiments. On this hardware, a full training & prediction run on the large
ec dataset containing 500K time series can be completed in less than 10 hours. While prediction is
already fast, is can easily parallelized if necessary. A description of the (simple) hyper-parameter
tuning procedure, the obtained hyper-parameter values, as well as statistics of datasets and running
time are given in supplementary material.

Datasets – We use five datasets for our evaluations. The first three–parts, electricity, and
traffic–are public datasets; parts consists of 1046 aligned time series of 50 time steps each,
representing monthly sales for different items of a US automobile company [18]; electricity
contains hourly time series of the electricity consumption of 370 customers [22]; traffic, also
used in [22], contains the hourly occupancy rate, between 0 and 1, of 963 car lanes of San Francisco
bay area freeways. For the parts dataset, we use the 42 first months as training data and report
error on the remaining 8. The results for electricity and traffic are computed using a rolling

3Covariates xi,t that do not depend on time are handled by repeating them along the time dimension.
4Instead of using dummy variables to encode these, we simply encode them as increasing numeric values.

6

• Related: (deep) state space models (SSM)
9 / 20Flunkert et al., 2017

https://arxiv.org/abs/1704.04110


Convolutional neural networks (CNN)
• Convolutional neural networks (CNN) are a family of neural

networks for processing grid data
▶ Grid data means: neighboring points related
▶ 1D grid → sequential data (e.g., time series, text, audio, . . .)
▶ 2D grids (images), 3D grids (movies, CT scans)

• Example: artistic style transfer

10 / 20Quartz

http://qz.com/495614/computers-can-now-paint-like-van-gogh-and-picasso/


Attention and Transformers
• Attention is a mechanism to summarize multiple inputs, often

focusing on a small, dynamic subset of the inputs

• Can be used in conjection with other architectures (e.g., RNNs
with attention) or standalone (e.g., Transformers)

Published as a conference paper at ICLR 2015
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Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight αij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Neural Image Caption Generation with Visual Attention

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along

Translation Image captioning
11 / 20Bahdanau and Cho, 2015; Xu et al., 2016

https://arxiv.org/pdf/1409.0473.pdf
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Graph neural networks
• Graph neural networks (GNNs) are a family of neural networks

for processing graph data

• Example: molecular property prediction

12 / 20Sanchez-Lengeling et al., 2019

https://arxiv.org/abs/1910.10685


Deep generative models
• Deep generative models use deep neural networks to define

generative models for complex data distributions (e.g., text,
audio, image, graphs, . . . )
▶ Our focus: AR, perhaps: VAEs, GANs

• Example: T5, GPT-1/2/3/GPT-4, ChatGPT

13 / 20Jay Alammar, The Illustrated Transformer

https://arxiv.org/abs/1910.10683
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://openai.com/research/gpt-4
https://openai.com/blog/chatgpt/
https://jalammar.github.io/illustrated-transformer


Deep learning frameworks
• In practice, neural networks are usually trained using deep

learning frameworks such as PyTorch, TensorFlow or JAX
▶ Linear algebra / array processing
▶ Common units, layers, models, loss functions
▶ Preprocessing and data preparation methods
▶ Common optimization methods
▶ GPU support, parallelization
▶ Support for model deployment
▶ Facilities for debugging and visualization
▶ ...

• Generally, to perform gradient-based parameter estimation
▶ Programmers specify model (e.g., implement forward pass)
▶ When used on training data, framework collects operations and

their outputs to build computation graph
▶ Gradient computation performed automatically from this

computation graph using backpropagation
▶ Optimizer uses gradient to update model

• No need to compute gradients manually, yet understanding of
backpropagation and optimization methods is important 14 / 20

https://pytorch.org/
https://www.tensorflow.org/
https://docs.jax.dev/en/latest/index.html


Example: PyTorch
# define model with one hidden layer
model = torch.nn.Sequential(

torch.nn.Linear(dim_in, dim_hidden),
torch.nn.ReLU(),
torch.nn.Linear(dim_hidden, dim_out),

)

# define loss function (mean squared error)
loss_fn = torch.nn.MSELoss()

# pick optimizer (Adam)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

# run for 500 epochs
for t in range(500):

y_pred = model(X) # forward: model output (X = examples)
loss = loss_fn(y_pred, y) # forward: loss (y = labels)
model.zero_grad() # clear old gradients
loss.backward() # backward: compute gradients
optimizer.step() # update parameters

15 / 20



Training (1)

• First, the tool: gradient-based methods to minimize some cost
function (backpropagation, optimizers)

• Challenge 1: large, complex models
▶ Fully-connected layer with n inputs and m units: O(nm) parameters
▶ 10 dense layers, each 200 inputs/units → 400k parameters
▶ 1 dense layer, 1M inputs, 200 units → 200M parameters
▶ E.g., T5 text-to-text transformer for NLP

(small: 60M, base: 220M, large: 770M)
▶ E.g., EfficientNet for CV

(B0: 5.3M, B1: 7.8M, . . . , B7: 66M)

• Challenge 2: limited training data
▶ Large labeled datasets generally not available
▶ Supervision signal alone may be insufficient to achieve reasonable

performance

16 / 20
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Training (2)

• Overfitting is a severe concern
▶ Universal approximation theorem: with sufficiently many hidden

neurons, FNN can perform arbitrarily well on the training set
▶ Sufficiently large models needed for complex tasks

• Then, the art: selected techniques and tricks for deep learning
▶ Training process and general techniques
▶ Architectures
▶ Both very important

• Generally, goals include
▶ Improve performance of gradient-based methods
▶ Reduce overfitting, improve generalizability
▶ Leverage additional data
▶ Reduce (task-specific) costs such as model size, computational

costs, enery consumption, amount of required supervision, . . .

17 / 20



Goals of this lecture

1. Solid understanding of key concepts
▶ Architectures
▶ Design patterns
▶ Training methods
▶ Systems

2. Ability to explore the deep learning literature on your own
▶ SOTA changes at fast pace → enable you to stay up-to-date
▶ Prerequisite/helpful for related lectures

3. Hands-on experience with selected frameworks and models
▶ Use and adapt pre-built DL models
▶ Be able to design, implement, train, and evaluate custom models /

training techniques

After this course, you should be able to read, understand, apply,
criticize, modify, and create DL models & techniques all by yourself.

18 / 20



Key applications and related lectures
• Computer vision

▶ E.g., image classification, object detection, image segmentation,
image generation, image restoration, . . .

▶ Cf. CS 646 Higher Level Computer Vision (HWS)
▶ Cf. CS 668 Generative Computer Vision Models (FSS)

• Natural language processing
▶ E.g., parsing, sentiment analysis, information retrieval, machine

translation, chat bots, . . .
▶ Cf. IE 696 Advanced Methods in Text Analyticss (FSS)
▶ Cf. IE 686 Large Language Models and Agents (FSS)

• Structured data; e.g., sequences/graphs/relational data
▶ E.g., recommender systems, drug discovery and toxicology, CRM,

bioinformatics, mobile advertising, financial fraud detection,
relational learning, data integration, . . .

▶ Cf. IE 670 Web Data Integration (HWS)
• Generally, AI: robotics, gaming, planning, . . .

▶ Not in this course
▶ Cf. IE 695 Reinforcement Learning (HWS)

19 / 20



Syllabus
Introduces basic and advanced deep learning architectures, key
techniques and training methods, systems, and selected applications.

• Feedforward neural networks

• Backpropagation and parameter optimization

• Machine learning systems

• Training techniques for deep learning models

• Recurrent neural networks / state space models

• Convolutional neural networks

• Attention and Transformers

• Deep learning for graphs

• Deep generative modeling

20 / 20
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Outline

1. Embeddings
2. Feedforward Neural Networks
3. Linear Layers
4. Non-Linear Layers
5. Multi-Layer Perceptrons

2 / 4



Lessons learned

• Artificial neural networks
▶ Useful for a variety of learning tasks, great results in some areas
▶ Complex models, need data + compute + experience

• Feedforward neural networks
▶ Discriminative models, directed flow from input to output
▶ Hidden layers enable high representational capacity
▶ Outputs of hidden layers can be seen as learned features

(embeddings)
▶ Train with backprop + tricks + tricks + tricks (see later lectures)

• Basic ML models can be represented as FNNs
▶ Linear/logistic/softmax regression (no hidden layer)
▶ SVD and k-Means clustering (one hidden layer)

• . . . and are a building block of more complex DL models
▶ E.g., as prediction head
▶ E.g., as artificial neuron

3 / 4



Suggested reading

• Drori, Ch. 1, 2.1–2.4

• Goodfellow et al., Ch. 6+7

• Murphy 1, Ch. 13.1+13.2

4 / 4

https://www.cambridge.org/highereducation/books/the-science-of-deep-learning/23B3CE5B09590BD9E30474C850FA5358
http://www.deeplearningbook.org/
https://probml.github.io/pml-book/book1.html
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From linear models to FNNs (1)

• Consider: prediction task with inputs x ∈ X and outputs y ∈ Y
▶ Goal: learn a function from X to Y

• Simple approach: use a (generalized) linear model
▶ Inputs must be real-valued feature vectors x ∈ RD

▶ Outputs are a real value (e.g., linear or logistic regression)

• Visually:

x ∈ RD Linear
model

ŷ ∈ R

• Recall (ML, 04-1): ŷ = ϕ(w⊤x+ b), where
▶ w ∈ RD is a weight vector (one weight per feature, learned)
▶ b ∈ R is a bias term (learned)
▶ ϕ is a mean function (e.g., identity or logistic function)

• Problem: low representational capacity due to linearity
assumption

2 / 11



Example: Logistic regression (from ML course)

Data (x ∈ R2) Prediction (ŷ ∈ [0, 1]))
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From linear models to FNNs (2)

• Representational capacity can be addressed by feature
engineering or using kernel methods (ML, 08)
▶ Allows to use arbitrary inputs spaces x ∈ X by mapping them to

real-valued vectors
▶ To do so, uses pre-specified feature extractor f : X → RF

• Visually:

x ∈ X Feature
engineering

Linear
model

ŷ ∈ R
f ∈ RF

• Problem: which feature extractor?
▶ Key to good performance
▶ Hard to get right (domain experts, extensive experimentation, . . . )
▶ To see this: can you write a suitable feature extractor for classifying

images? (if not, see here)

4 / 11

https://en.wikipedia.org/wiki/Scale-invariant_feature_transform


Example: L1VM (from ML course)
L1VM, RBF kernel, logistic regression

λ = 0.1, σ2 = 0.571
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From linear models to FNNs (3)

• DL methods can be interpreted as an approach to learn features
▶ Input objects x ∈ X are transformed into dense, continuous,

low-dimensional representations called embeddings z ∈ RZ

▶ Z = embedding dimensionality
▶ Useful to represent complex objects (categorical data, textual data,

graph data, tabular data, images, . . . )
▶ Think: complex to work with objects, simple to work with

embeddings
▶ Useful embedding space = goal of representation learning

• Visually:

x ∈ X Deep
learning

Linear
model

ŷ ∈ Rz ∈ RZ

• Key point: instead of engineering features manually, embeddings
are learned from data → Main topic of this course
▶ Embeddings also called: latent code, distributed representations
▶ Embedding space also called: latent space
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Example: Document embeddings
804414 newswire stories, inputs = per-document rel. frequencies of
2000 most common word stems (x ∈ R2000), shown here is 2D
embedding (z ∈ R2) of two different methods (left: linear, right:
autoencoder)

adjusting the weights and biases to lower the

energy of that image and to raise the energy of

similar, Bconfabulated[ images that the network

would prefer to the real data. Given a training

image, the binary state h
j
of each feature de-

tector j is set to 1 with probability s(b
j
þP

i
v
i
w
ij
), where s(x) is the logistic function

1/E1 þ exp (–x)^, b
j
is the bias of j, v

i
is the

state of pixel i, and w
ij
is the weight between i

and j. Once binary states have been chosen for

the hidden units, a Bconfabulation[ is produced

by setting each v
i
to 1 with probability s(b

i
þP

j
h
j
w
ij
), where b

i
is the bias of i. The states of

the hidden units are then updated once more so

that they represent features of the confabula-

tion. The change in a weight is given by

Dwij 0 e
�
bvihjÀdata j bvihjÀrecon

�
ð2Þ

where e is a learning rate, bv
i
h
j
À
data

is the

fraction of times that the pixel i and feature

detector j are on together when the feature

detectors are being driven by data, and

bv
i
h
j
À
recon

is the corresponding fraction for

confabulations. A simplified version of the

same learning rule is used for the biases. The

learning works well even though it is not

exactly following the gradient of the log

probability of the training data (6).

A single layer of binary features is not the

best way to model the structure in a set of im-

ages. After learning one layer of feature de-

tectors, we can treat their activities—when they

are being driven by the data—as data for

learning a second layer of features. The first

layer of feature detectors then become the

visible units for learning the next RBM. This

layer-by-layer learning can be repeated as many

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.

REPORTS

28 JULY 2006 VOL 313 SCIENCE www.sciencemag.org506 7 / 11Hinton and Salakhutdinov, 2006

https://www.science.org/doi/10.1126/science.1127647


Encoders and prediction heads

• Functions that transform objects x ∈ X to embeddings z ∈ RZ

are known as encoders
• Functions that transform embeddings z ∈ RZ to predictions
y ∈ R are known as prediction heads
▶ Can be linear or more complex
▶ Typically much simpler than encoder
▶ E.g., when prediction head is logistic regression, then positive and

negative instances are ideally linearly separable in embedding space
▶ Sometimes referred to as unembed operation

• Visually:

x ∈ X Encoder
Prediction

head
ŷ ∈ Rz ∈ RZ

• Both encoder and prediction head are learned neural
(sub)networks
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Contrastive learning
• Embeddings can be used in other ways as well

• E.g., to compare objects, potentially across multiple modalities
▶ Useful, for example, for zero- and few-shot prediction
▶ Learned via a “contrastive learning” approach (more later)

• Example: CLIP embeddings for images and text

9 / 11

https://openai.com/research/clip


Structured prediction / deep generative models

• To handle more complex output spaces Y, we may replace the
prediction head by a component that “generates” output

• Functions that transform embeddings z ∈ RZ to (complex)
outputs y ∈ Y are known as decoders
▶ Note: in such models, embedding dimensionality Z may or may not

depend on input x

• Visually:

x ∈ X Encoder Decoder y ∈ Yz ∈ RZ
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Example: unCLIP (DALL-E 2)

11 / 11
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Artificial neuron
• An artifical neuron (AN) is a function f : Rn → R

▶ Inputs are vectors x ∈ Rn

▶ Output is a value y ∈ R

• f is taken from a family of functions that is parameterized by
▶ A weight vector w ∈ Rn (one weight per input)
▶ A bias b ∈ R
▶ A transfer function or activation function ϕ : R → R

• Basic structure: y = ϕ(w⊤x+ b)
▶ Computes the weighted sum

s = w⊤x+ b of its inputs and bias
(called preactivation)

▶ Passes s through the transfer
function to obtain output y
(called activation)

▶ ϕ can be deterministic or stochastic

• As before: bias can be replaced by an
additional input x0 = 1 and
corresponding weight w0 = b

2 / 12
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Types of artificial neurons

• The type of an AN is determined by its transfer function ϕ

• An AN of a given type can represent the family of functions

Fϕ =
{
x → ϕ(w⊤x+ b) | w ∈ Rn, b ∈ R

}
• Each function in this family can be represented by its bias and

weight vector

• We will see later that types are usually specified up-front,
whereas weights are learned

• The simplest type of neuron is a constant neuron
▶ No inputs; output fixed value x ∈ R
▶ Notation (from now on): x or simply x
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Example: Linear neuron / identity

• Uses ϕ(s) = s

• Notation:

−4 −2 0 2 4
−

4
−

2
0

2
4

s=wTx + b

y

• Simple but computationally limited

• We often but not always want non-linear transfer functions
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Example: Logistic neuron

• Use logistic function ϕ(s) = σ(s)
def
= 1

1+exp(−s)

• Notation:

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s=wTx + b

y

• Gives a real-valued output that is smooth and bounded in [0, 1]
▶ Negative preactivations mapped to value < 0.5
▶ 0 preactivation mapped to 0.5
▶ Positive preactivations mapped to value > 0.5

• Non-linear
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Example: Stochastic binary neuron

• Also use logistic function

• But output of the logistic function is treated as a probability of
producing a spike (1)

• I.e,. ϕ(s) =

{
1 with probability σ(s)

0 otherwise

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s=wTx + b

P
(Y

=
1)

• Defines a probability distribution over outputs

• Other neurons can also be made stochastic
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What is an artificial neural network?

• A network of artificial neurons
▶ A set of (artificial) neurons
▶ Connections between neurons (directed or undirected)

• Many different architectures
▶ How many neurons? Of which type?
▶ Are there output neurons?
▶ Are there hidden neurons (neither input nor output)?
▶ Which neurons are connected?
▶ Are connections directed or undirected?
▶ Are there cycles?

• Picking the right architecture for the problem at hand is
important and requires skill/thought/compute power
→ Architecture engineering

• Can represent a wide range of functions (universal approximation
theorem)
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Feedforward neural networks
• A feedforward neural network (FNN) is an ANN in which

▶ All connections are directed, and
▶ There are no cycles (i.e., forms a DAG)

• Neurons usually grouped in layers
▶ Input neurons: no incoming edges (first layer)
▶ Output neurons: no outgoing edges (last layer)
▶ Hidden neurons: all others (layer = maximum distance from input)
▶ Layers do not need to be fully connected
▶ Traditionally: edges only between subsequent layers

(but: edges that skip layers are allowed, too)

• Example: an FNN with one hidden layer (omitting bias inputs)

Input layer Hidden layer Output layer 8 / 12



MNIST, best performer (2011), architecture

Deep convolutional neural network (no preprocessing)

2.2 Convolutional layer
A convolutional layer is parametrized by the size and the
number of the maps, kernel sizes, skipping factors, and the
connection table. Each layer has M maps of equal size (Mx,
My). A kernel (blue rectangle in Fig 1) of size (Kx, Ky) is
shifted over the valid region of the input image (i.e. the kernel
has to be completely inside the image). The skipping factors
Sx and Sy define how many pixels the filter/kernel skips in x-
and y-direction between subsequent convolutions. The size
of the output map is then defined as:

Mn
x =

Mn−1
x −Kn

x

Sn
x + 1

+ 1; Mn
y =

Mn−1
y −Kn

y

Sn
y + 1

+ 1 (1)

where index n indicates the layer. Each map in layer Ln is
connected to at most Mn−1 maps in layer Ln−1. Neurons of
a given map share their weights but have different receptive
fields.

2.3 Max-pooling layer
The biggest architectural difference between our implemen-
tation and the CNN of [LeCun et al., 1998] is the use of
a max-pooling layer instead of a sub-sampling layer. No
such layer is used by [Simard et al., 2003] who simply skips
nearby pixels prior to convolution, instead of pooling or av-
eraging. [Scherer et al., 2010] found that max-pooling can
lead to faster convergence, select superior invariant features,
and improve generalization. A theoretical analysis of feature
pooling in general and max-pooling in particular is given by
[Boureau et al., 2010]. The output of the max-pooling layer is
given by the maximum activation over non-overlapping rect-
angular regions of size (Kx, Ky). Max-pooling enables posi-
tion invariance over larger local regions and downsamples the
input image by a factor of Kx and Ky along each direction.

2.4 Classification layer
Kernel sizes of convolutional filters and max-pooling rectan-
gles as well as skipping factors are chosen such that either
the output maps of the last convolutional layer are downsam-
pled to 1 pixel per map, or a fully connected layer combines
the outputs of the topmost convolutional layer into a 1D fea-
ture vector. The top layer is always fully connected, with one
output unit per class label.

3 GPU implementation
The latest generation of NVIDIA GPUs, the 400 and 500 se-
ries (we use GTX 480 & GTX 580), has many advantages
over older GPUs, most notably the presence of a R/W L2
global cache for device memory. This permits faster pro-
grams and simplifies writing the code. In fact, the cor-
responding transfer of complexity into hardware alleviates
many software and optimization problems. Our experiments
show that the CNN program becomes 2-3 times faster just by
switching from GTX 285 to GTX 480.

Manual optimization of CUDA code is very time-
consuming and error prone. We optimize for the new ar-
chitecture, relying on the L2 cache for many of the device
memory accesses, instead of manually writing code that uses

Figure 1: Architecture of a convolutional neural network with
fully connected layers, kernel sizes of 5 x 5 and skipping fac-
tors of 1.

textures and shared memory. Code obtained by this prag-
matic strategy is fast enough. We use the following types
of optimization: pre-computed expressions, unrolled loops
within template kernels, strided matrices to obtain coalesced
memory accesses and registers wherever possible. Additional
manual optimizations are possible in case future image clas-
sification problems will require even more computing power.

3.1 Data structures
Both outputs y and deltas δ of layer Ln are 2D strided. Their
original size is Mx ×MMy , but they are horizontally strided
with a pitch of 32 floats (we use this stride for all 2D data),
resulting in coalesced memory accesses. The vertical stride
avoids additional bounding tests in CUDA kernels.

All connections between maps of consecutive layers Ln−1

and Ln are stored in matrix Cn. Each row of Cn contains
all connections that feed into a particular map in layer Ln.
Because we aim for a flexible architecture with partially con-
nected layers, in the first column we store the number of pre-
vious connections. This index is useful for Forward Propaga-
tion (FP) and Adjusting Weights (AW) CUDA kernels. The
second column stores the number of connections, followed
by corresponding indices of maps in Ln−1 connected to the
current map.

For BP and FP, analogous information about connections
is needed. We therefore store backward connections in
CBP . AW requires a list of all map connections (see Sub-
section 3.4), stored as an array of map index pairs. Dealing
with biases in BP kernel requires to know where the weights
of particular connections start; this information is stored in a
2D array WIDXBP of size Mn ×Mn−1.

3.2 Forward propagation
A straightforward way of parallelizing FP is to assign a thread
block to each map that has to be computed. For maps with
more than 1024 neurons, the job is further split into smaller

1238

9 / 12Cireşan et al., 2011 + slides
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Learning
• Once we settled on an architecture, we need to learn connection

strengths (weights)

• Simple approach
▶ Supervised learning with labeled training examples
▶ Use a suitable notion of model performance (e.g., loss function,

likelihood)
▶ Learn all weights jointly

→ As before: ERM/RRM, MLE/MAP, Bayesian inference (ML, 02-3)
▶ Most common: empirical/regularized risk minimizaton

• We will see: simple approach is often “not enough”
▶ High model complexity
▶ Limited (labeled) training data

• Values of hidden units can be thought of as features, but which
features are good is unknown and needs to be learned
▶ This makes learning hard
▶ Note: “embeddings” typically refer to the values of a “certain”

hidden layer in a larger FNN (more later)
10 / 12



FNNs, more generally

• Choice of neuron type(s) important
▶ Influences expressability
▶ Influences “learnability”
▶ Many more types of artificial neurons have been proposed

• Neurons may not follow the template discussed here
▶ E.g., product neuron y =

∏
i xi

▶ E.g., max-pooling neuron y = maxi(xi)
▶ In practice: (parameterized or fixed) operators instead of artificial

neurons (more later)

• Layers may be more general
▶ I.e., any parameterized function from Rn to Rm

▶ May compute multiple “dependent” outputs jointly
(e.g., softmax layer)

▶ May have additional internal structure (e.g., Transformer layers)

• Will see: generally, FNNs represented as a “compute graph”

11 / 12
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Preview: logistic regression (2D), N = 2

Forward pass

inputs matmul

weights

σ log loss
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X

w
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Recall: Supervised learning with FNNs
• Supervised learning

▶ Learn a mapping from inputs x to outputs y
▶ Training set D = { (xi,yi) }

N
i=1 of input-output pairs

▶ With FNNs: for input xi, we want output ŷi “close” to yi
▶ Learning means adjusting the weights such that the FNN does this

• FNNs are discriminative
▶ Given an input x, they compute an output ŷ
▶ But they don’t allow going from outputs to inputs

• Hidden layer outputs are inputs of the next layer
▶ We may also think of hidden layers as features for the next layer
▶ These features are not provided upfront, but learned

x1

x2

x3

x4

ŷ1

ŷ2
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Linear layers

• Layers in which all layer inputs are connected with all layer
outputs are called dense layers or fully-connected layers

• A dense linear layer is a layer consisting of only linear neurons
▶ n layer inputs (x ∈ Rn), m layer outputs (y ∈ Rm)
▶ Parameterized by weight vectors w1, . . . ,wm ∈ Rn

▶ Optionally: biases b1, . . . , bm ∈ R

• Outputs given by

yj =
∑
i

[wj ]ixi + bj = ⟨wj ,x⟩+ bj

• Example: n = 4, m = 2, no bias
x1

x2

x3

x4

y1

y2

w1

w2
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The action of a linear layer

• Without bias, we have: yj = ⟨wj ,x⟩
• Let W ∈ Rn×m a weight matrix in which the j-th column

equals the weights wj of the j-th layer output

W =
(
w1 w2 . . . wm

)
• Then: y = W⊤x

▶ Linear layers compute a matrix-vector product

• For our example, W =
(
w1 w2

)
∈ R4×2 and

W⊤x =

(
w⊤

1

w⊤
2

)
x =

(
⟨w1,x⟩
⟨w2,x⟩

)
=

(
y1
y2

)
= y
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Using linear layers

• Typical uses of linear layers
▶ As an output layer for regression tasks
▶ As a hidden layer to perform dimensionality reduction (m < n)

(in ML somewhat confusingly called linear projection)
▶ Likewise, as a hidden layer to increase dimensionality (m > n)

• Number of parameters: nm (without bias), nm+m (with bias)

n m # parameters
64 64 4,096

128 128 16,384
256 256 65,536
512 512 262,144

1,024 1,024 1,048,576
768 3,072 2,359,296 (T5-Base dense layer, dim up)

3,072 768 2,359,296 (T5-Base dense layer, dim down)
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Linear regression as FNN (1)

• In a linear FNN, all neurons/layers are linear

• Simplest linear FNN: single linear layer with one output

Input layer Output layer

x1

x2

x3

ŷ

• Output ŷ = ⟨w,x⟩+ b is linear in input x → linear model

• Suppose we train this network using ERM with squared loss
▶ Empirical risk is 1

N

∑
i(yi − ŷi)

2 → minimize
▶ We obtain ordinary least squares (OLS) estimate for linear regression

• Suppose we train with MLE assuming i.i.d. normal errors
▶ I.e., assuming yi = ⟨w∗,xi⟩+ b∗ + ϵi, where ϵi ∼ N (0, σ2)
▶ Likelihood

∏
i N (yi|ŷi, σ2) → maximize

▶ Recall: solution is OLS estimate
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Linear regression as FNN (2)

• With multiple outputs, we obtain multiple linear regression
x1

x2

x3

x4

ŷ1

ŷ2

• Linear FNN (w/o hidden layer) ≡ linear regression
▶ To determine bias and weights, any suitable linear regression library

can be used

• Outputs remain linear even with hidden layers (→ exercise)
→ That’s why we often want non-linearities

• For regression problems, linear layers often used as output layer

x ∈ X Encoder Linear layer ŷ ∈ Rz ∈ RZ
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Autoencoders
• FNNs are useful for unsupervised learning as well

▶ We are given an unlabeled dataset D = {xi }Ni=1 with xi ∈ RD

▶ We don’t have outputs
▶ We want to find structure, or patterns, or reduce dimensionality

• Idea: train FNN to predict its input, i.e., set yi = xi
▶ The resulting FNN is called an autoencoder

x ∈ X Encoder Decoder x̂ ∈ X
z ∈ RZ

Feed into supervised learner

• Why autoencoders?
▶ Autoencoders are a technique to learn embeddings (z)
▶ E.g., semi-supervised learning: train autoencoder on all inputs

(labeled+unlabeled), use embeddings for supervised learner (labeled)
▶ E.g., clustering: use embeddings as inputs to, say, K-means
▶ E.g., denoising: use x̂ instead of x
▶ E.g., visualization: visualize z (e.g., using Z = 2)
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Linear autoencoders

• Linear FNNs can do more than what may be expected at first
glance

• A linear autoencoder uses only linear layers (in both encoder
and decoder)

• A simple (but useless) linear autoencoder

Input layer (x) Hidden layer (z) Output layer (x̂)

x1 x̂1

x2 x̂2

x3 x̂3

x4 x̂4

x5 x̂5

▶ Can you figure out the optimal weight matrices (such that
x̂j = xj)?
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Bottlenecks
• Consider a linear autoencoder with x ∈ RD and one hidden layer

with Z < D hidden neurons
x1 x̂1

x2 x̂2

x3 x̂3

x4 x̂4

x5 x̂5

z1

z2

W 1 W 2

▶ Can you still figure out the optimal weight matrices?

• A layer with few neurons is referred to as a bottleneck
▶ I.e., fewer neurons than the surrounding layers
▶ Forces FNN to “compress” information → dimensionality reduction
▶ FNNs with bottlenecks learn how to compress

• Since autoencoder needs to reconstruct all inputs well, the
optimal “compression” depends on all training inputs
▶ E.g., above: 5D data (x) compressed into a 2D representation (z)
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Obtaining optimal weights

• We have z = W⊤
1 x and x̂ = W⊤

2 z = W⊤
2 W

⊤
1 x

• For squared error, solve argminW 1,W 2

[∑
i

∑
j(xij − x̂ij)

2
]

• The solution can be read off the singular value decomposition
(SVD) of X (ML, 06-2)
▶ Let X be the design matrix and UZΣZV

⊤
Z its size-Z truncated SVD

▶ UZ is an N × Z matrix with the first Z left-singular vectors of X
▶ V Z is an D × Z matrix with the first Z right-singular vectors of X
▶ ΣZ is an Z × Z matrix with the first Z singular values of X
▶ An optimal solution is W 1 = V Z and W 2 = V ⊤

Z
▶ For this solution, z⊤

i = x⊤
i V z = [UZ ]i:ΣZ

▶ And x̂⊤
i = z⊤

i V z = [UZ ]i:ΣZV
⊤
Z = the SVD reconstruction

• This is closely related to principal component analysis (PCA)
▶ Main difference: first center the data so that each feature has mean 0
▶ Then W 1 contains the first Z principal components as its columns
▶ And zi contains the PCA scores for xi
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Example: Weather data

X Jan Apr Jul Oct Year
Stockholm -0.70 8.60 21.90 9.90 10.00

Minsk -2.10 12.20 23.60 10.20 10.60
London 7.90 13.30 22.80 15.20 14.80

Budapest 1.20 16.30 26.50 16.10 15.00
Paris 6.90 14.70 24.40 15.80 15.50

Bucharests 1.50 18.00 28.80 18.00 16.50
Barcelona 12.40 17.60 27.50 21.50 20.00

Rome 11.90 17.70 30.30 21.40 20.40
Lisbon 14.80 19.80 27.90 22.50 21.50
Athens 12.90 20.30 32.60 23.10 22.30

Valencia 16.10 20.20 29.10 23.60 22.30
Malta 16.10 20.00 31.50 25.20 23.20
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Example: Weights and representation

W 1 1 2
Jan 0.22 -0.85
Apr 0.40 0.06
Jul 0.64 0.47
Oct 0.45 -0.18
Year 0.43 -0.14

W 2 Ĵan Âpr Ĵul Ôct Ŷear
1 0.22 0.40 0.64 0.45 0.43
2 -0.85 0.06 0.47 -0.18 -0.14

Z 1 2
Stockholm 26.02 8.25

Minsk 28.63 10.30
London 34.76 0.00

Budapest 37.36 7.42
Paris 36.69 1.48

Bucharests 41.07 7.79
Barcelona 45.51 -3.22

Rome 47.36 -1.50
Lisbon 48.25 -5.34
Athens 51.66 -1.69

Valencia 50.30 -6.16
Malta 52.86 -5.45
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Plot of representation
Bottlenecks of two neurons can be useful for visualization.
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General autoencoders

x ∈ X Encoder Decoder x̂ ∈ X
z ∈ RZ

• Encoder is a function (e.g., an FNN) that compresses input x to
an embedding z (also called code or distributed representation)

• Decoder is a function (e.g., an FNN) that decompresses an
embedding z to obtain reconstruction x̂
▶ Think: approximate “inverse” of encoder
▶ Decoder may be a “reversed” architecture of the encoder (e.g.,

layers in reverse order but with different weights)
▶ Decoder may be an entirely different network

• Simplest way to train autoencoder is to use data points x as
both input and reconstruction target
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Example: Representing documents
804414 newswire stories, inputs = per-document rel. frequencies of
2000 most common word stems, autoencoder = logistic hidden
units + linear output units

adjusting the weights and biases to lower the

energy of that image and to raise the energy of

similar, Bconfabulated[ images that the network

would prefer to the real data. Given a training

image, the binary state h
j
of each feature de-

tector j is set to 1 with probability s(b
j
þP

i
v
i
w
ij
), where s(x) is the logistic function

1/E1 þ exp (–x)^, b
j
is the bias of j, v

i
is the

state of pixel i, and w
ij
is the weight between i

and j. Once binary states have been chosen for

the hidden units, a Bconfabulation[ is produced

by setting each v
i
to 1 with probability s(b

i
þP

j
h
j
w
ij
), where b

i
is the bias of i. The states of

the hidden units are then updated once more so

that they represent features of the confabula-

tion. The change in a weight is given by

Dwij 0 e
�
bvihjÀdata j bvihjÀrecon

�
ð2Þ

where e is a learning rate, bv
i
h
j
À
data

is the

fraction of times that the pixel i and feature

detector j are on together when the feature

detectors are being driven by data, and

bv
i
h
j
À
recon

is the corresponding fraction for

confabulations. A simplified version of the

same learning rule is used for the biases. The

learning works well even though it is not

exactly following the gradient of the log

probability of the training data (6).

A single layer of binary features is not the

best way to model the structure in a set of im-

ages. After learning one layer of feature de-

tectors, we can treat their activities—when they

are being driven by the data—as data for

learning a second layer of features. The first

layer of feature detectors then become the

visible units for learning the next RBM. This

layer-by-layer learning can be repeated as many

Fig. 3. (A) The two-
dimensional codes for 500
digits of each class produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
visualization, see (8).

Fig. 4. (A) The fraction of
retrieved documents in the
same class as the query when
a query document from the
test set is used to retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA. (C)
The codes produced by a 2000-
500-250-125-2 autoencoder.

REPORTS

28 JULY 2006 VOL 313 SCIENCE www.sciencemag.org506

16 / 17Hinton and Salakhutdinov, 2006

https://www.science.org/doi/10.1126/science.1127647


Discussion (autoencoders)

• Autoencoders are a form of representation learning
• Autoencoders are an example of unsupervised pre-training

▶ I.e., learn (parts of) the weights of a network without supervision

• Many variants exists; e.g.,
▶ Architecture of encoder/decoder
▶ Choice of cost function
▶ Construction of inputs and outputs for learning
▶ Constraints on embeddings

• Examples
▶ Denoising autoencoders perturb the input x with noise to obtain

x̃, and then aim to reconstruct the original input x from x̃
→ noise robustness

▶ Variational autoencoders force z to follow a specified simple
distribution (e.g., diagonal Gaussian)
→ generative model

▶ Sparse autoencoders force z to be sparse
→ sparse representations
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Fully-connected layers (1)

• Recall: Layers in which all layer inputs are connected with all
layer outputs are called dense layers or fully-connected layers
▶ n layer inputs (x ∈ Rn), m layer outputs (y ∈ Rm)
▶ Parameterized by weight vectors w1, . . . ,wm ∈ Rn
▶ Optionally: biases b1, . . . , bm ∈ R
▶ Transfer function ϕ : R→ R

• Outputs given by

yj = ϕ(⟨wj ,x⟩+ bj)

• Example: n = 4, m = 2, no bias
x1

x2

x3

x4

ϕ y1

ϕ y2

w1

w2
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Fully-connected layers (2)

• We can also interpret a fully-connected layer as a (learned) linear
layer followed by a (fixed) non-linearity:

x1

x2

x3

x4

ϕ y1

ϕ y2

w1

w2

• The action of the layer (without bias) is

y = ϕ(W⊤x),

where we take the convention that ϕ is applied element-wise on
vector inputs
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Binary threshold neuron
• One of the (seemingly) simplest non-linear neurons is the binary

threshold neuron (also called McCulloch-Pitts neuron)
• Uses the binary threshold function as transfer function: outputs

fixed “spike” if input s is non-negative, else “nothing”

• I.e,. ϕ(s) = I(s ≥ 0) =

{
1 if s ≥ 0

0 otherwise

• Notation: or with fixed bias ≥ 0 , ≥ 1 , . . .

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s=wTx + b

y

• One interpretation: each input is the truth value of some
proposition, output is truth value of another proposition
(→ exercise)

4 / 22McCulloch and Pitts, 1943

http://deeplearning.cs.cmu.edu/pdfs/McCulloch.and.Pitts.pdf


Perceptron

• Invented 1957 by Frank Rosenblatt at the Cornell Aeronautical
Laboratory

• Corresponds to an FNN without hidden layers and binary
threshold units for outputs (single-layer perceptron)

x1

x2

x3

ŷ

• Already discussed in ML course (ML 04-1, which see)
▶ Linear decision boundary = {x : ⟨w,x⟩+ b = 0 }

• Many hopes and much controversy about what it can do at the
time (see Olazaran (1996) for history)

5 / 22

https://journals.sagepub.com/doi/10.1177/030631296026003005


Recap: What can perceptrons learn?

• Perceptrons can classify perfectly if there exists an affine
hyperplane that separates the classes
▶ I.e., when the data is linearly separable

• Otherwise, the perceptron must make errors on some inputs

• This is quite limited; e.g., perceptrons cannot learn the XOR
function

• We will come back to this later

6 / 22Image source

http://www.cs.ru.nl/~ths/rt2/col/h10/10neurENG.html


Complexity of perceptron learning

• Suppose we want to minimize the misclassification rate (0-1 loss)

• If the data is linearly separable → “easy”
▶ In P; e.g., solve the linear program

minimize 0
subject to ⟨xi,w⟩ ≥ 0 for all xi in pos. class (yi = 1)

⟨xi,w⟩ < 0 for all xi in neg. class (yi = 0)

• If the data is not linearly separable → “difficult”
▶ Finding an optimal weight vector is NP-hard (when dimensionality

n is part of the input)
▶ Remains NP-hard even when weights restricted to {−1, 1 }
▶ NP-hard to approximate even when weights restricted to {−1, 1 }
▶ Fortunately, we are often able to nevertheless find sufficiently good

weights in practice

7 / 22Amaldi and Kann, 1995

http://www.sciencedirect.com/science/article/pii/030439759400254G


Perceptrons with multiple output units
Consider a perceptron with m binary outputs for classification tasks.

1. Multi-label classification → works
▶ Each input is associated with

m binary class labels
▶ Goal is to predict each of them
▶ E.g.: height (small/tall),

hair color (light/dark), . . .
2. Multi-class classification (first option) → problematic

▶ Each input is associated with one out of 2m class labels
▶ We associate each label with one output vector of the perceptron
▶ Problem: Which label with which output vector? (choice matters)

3. Multi-class classification (second option) → problematic
▶ Each input is associated with one out of m class labels
▶ We associate each label with its indicator vector (one-hot encoding)
▶ Problem: What if the network outputs less/more than a single 1?

8 / 22
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An autoencoder with a binary threshold unit

• Consider the following autoencoder (with biases)

Input layer Hidden layer Output layer

x1 x̂1

x2 x̂2

x3 x̂3

x4 x̂4

x5 x̂5

b1,w1 b2,w2

z

▶ Observe: z ∈ { 0, 1 } is a binary embedding (binary code)

• Assume that we want to minimize squared error over training
data
▶ What does this autoencoder then compute?
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Interpreting the weights (1)
x1 x̂1

x2 x̂2

b1,w1 b2,w2

z

• Suppose that we are given b1 and w1

• The binary threshold unit then acts as a linear “classifier”
▶ Input x mapped to either z = 0 (bottom left) or z = 1 (top right)

−4 −2 0 2 4 6 8

−
2

0
2

4
6

x1

x 2

w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1w1
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Interpreting the weights (2)
x1 x̂1

x2 x̂2

b1,w1 b2,w2

z

• Let’s now look at b2 and w2
▶ Given z, output is x̂ = w2z + b2
▶ All points in “class” z = 0 are mapped to c0

def
= b2

▶ All points in “class” z = 1 are mapped to c1
def
= b2 +w2

• Given b and w1, what are the optimal choices of c0 and c1?
▶ Denote by zi the class of input xi
▶ Squared error is

∑
i

∑
j(xij − x̂ij)2 =

∑
i ∥xi − czi∥

2

▶ Alternatively:
∑
i:zi=0 ∥xi − c0∥

2
+
∑
i:zi=1 ∥xi − c1∥

2

▶ For each class k, our goal is to minimize the squared Euclidean
distance between the xi’s of the class and its representative ck

▶ Optimum solution is the mean of the examples of the class

ck =
1∑

i:zi=k
1

∑

i:zi=k

xi
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Interpreting the weights (3)
x1 x̂1

x2 x̂2

b1,w1 b2,w2

z

• The overall optimum solution is
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x1

x 2
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• Can you see what the autoencoder does?
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Interpreting the weights (4)

x1 x̂1

x2 x̂2

b1,w1 b2,w2

z

• Optimum solution agrees with K-means for K = 2

• K-means objective is to minimize the sum of squared distances

argmin
C

K∑

k=1

∑

x∈Ck

∥x− µk∥2 ,

where µk is the mean of the points in cluster Ck

• Given an optimal K-means clustering for K = 2
▶ Each data point is associated to cluster of closest representative
▶ We set ck = µk (and thus obtain b2 and w2)
▶ We set b1 and w1 such that the decision boundary is the set of

points with equal distance to µ1 and µ2 (see previous slide)
▶ The binary threshold unit then associates each point xi with its

correct cluster zi
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An autoencoder with multiple binary threshold units

• What happens if we have multiple binary threshold units?

Input layer Hidden layer Output layer

x1 x̂1

x2 x̂2

x3 x̂3

x4 x̂4

x5 x̂5

b1,W 1 b2,W 2

z

• This autoencoder also “clusters” the data
▶ Associates each data point with a “binary code” (00, 01, 10, 11)
▶ Each codeword can be seen as a cluster (2Z in total)

• For Z > 1 binary threshold units, the optimum solution does
does not correspond to K-means anymore (with K = 2Z)
▶ Why? → exercise
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Recall: Logistic neuron

• Use logistic function ϕ(s) = σ(s)
def
= 1

1+exp(−s)

• Notation:

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s=wTx + b

y

• Gives a real-valued output that is smooth and bounded in [0, 1]
▶ Negative activations mapped to value < 0.5
▶ 0 activation mapped to 0.5
▶ Positive activation mapped to value > 0.5

• Non-linear
15 / 22



An FNN with a single logistic unit

• If the binary threshold unit of a perceptron is replaced by a
logistic unit, we obtain an FNN similar to a perceptron

x1

x2

x3

ŷ

• What’s the difference?
▶ Fix some weight vector w (and ignore bias)
▶ Above neural network outputs ŷ ∈ [0, 1] with

ŷ = σ(⟨w,x⟩)
{
< 0.5 ⟨w,x⟩ < 0

≥ 0.5 ⟨w,x⟩ ≥ 0

▶ If output of the logistic unit is rounded to the closest integer, one
obtains output of the corresponding perceptron

▶ Logistic unit can be seen as a “smooth” version of a binary
threshold unit
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Smoothing
If we scale the weights by some constant c > 0, we change the
degree of smoothing.

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

<cw,x>

ŷ

c=0.5
c=1
c=2
c=4
c=8
c=1024
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Binary classification
• Suppose we use the network for a binary classification task

▶ Given a labeled set D = { (xi, yi) }Ni=1 of input-output pairs

• We can minimize the misclassification error (0-1 loss)
∑

i

|yi − round(ŷi)|
▶ Equivalent to perceptron
▶ Outputs related to distance from decision boundary, but no

probabilistic interpretation possible

• We can maximize the log-likelihood of the provided labels

lnL =
∑

i

[ yi ln ŷi + (1− yi) ln(1− ŷi) ]
▶ Equivalent to logistic regression
▶ Input ⟨w,x⟩ to logistic transfer function interpreted as estimate of

log odds of positive class
▶ Output ŷi interpreted as confidence for positive class

• Output layer of FNNs for binary classification tasks is
typically a logistic neuron

18 / 22



Multi-class classification (bad approach)

• Naive (bad) approach to multi-class classification
▶ For C classes, use C logistic neurons
▶ Associate each label with its indicator vector (one-hot encoding)
▶ We may interpret output ŷc as confidence in label c and predict the

label with the largest confidence
x1

x2

x3

x4

ŷ1

ŷ2

ŷ3

W

• Problem: Interpretation of ŷc as confidence not valid
▶ Outputs ŷc may not sum to one → ŷ is not a probability vector

• Solution: tie the output neurons appropriately
→ softmax layer (cf. ML 04-2)
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Recap: The softmax function
• The softmax function S(η)

▶ Takes a real vector η = (η1, . . . , ηC)
⊤ ∈ RC

▶ And transforms it into an C-dimensional probability vector S(η)

S(η)c =
exp(ηc)∑C

c′=1 exp(ηc′)

▶ Called this way because it exaggerates differences and acts
somewhat like the max function (approximates indicator function of
largest coefficient)

4.2. Gaussian discriminant analysis 103
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(b)

Figure 4.3 Quadratic decision boundaries in 2D for the 2 and 3 class case. Figure generated by
discrimAnalysisDboundariesDemo.
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Figure 4.4 Softmax distribution S(η/T ), where η = (3, 0, 1), at different temperatures T . When the
temperature is high (left), the distribution is uniform, whereas when the temperature is low (right), the
distribution is “spiky”, with all its mass on the largest element. Figure generated by softmaxDemo2.

4.2.2 Linear discriminant analysis (LDA)

We now consider a special case in which the covariance matrices are tied or shared across
classes, Σc = Σ. In this case, we can simplify Equation 4.33 as follows:

p(y = c|x,θ) ∝ πc exp

[
μT

c Σ
−1x− 1

2
xTΣ−1x− 1

2
μT

c Σ
−1μc

]
(4.34)

= exp

[
μT

c Σ
−1x− 1

2
μT

c Σ
−1μc + log πc

]
exp[−1

2
xTΣ−1x] (4.35)

Since the quadratic term xTΣ−1x is independent of c, it will cancel out in the numerator and
denominator. If we define

γc = −1

2
μT

c Σ
−1μc + log πc (4.36)

βc = Σ−1μc (4.37)

20 / 22Murphy, 2012



Softmax layer
x1

x2

x3

x4

ŷ1

ŷ2

ŷ3

W , b

Softmax layer

• A softmax layer computes ŷ = S

(
W⊤x+ b

T

)

▶ ŷ ∈ SC is a probability vector
▶ T ∈ R+ is a hyperparameter known as the temperature
→ Controls smoothness of distribution (assume T = 1 for now)

• FNN with single softmax layer trained with MLE / ERM + log loss
▶ ŷc is model confidence in label c
▶ Equivalent to multinomial logistic regression (softmax regression)

• Output layer of FNNs for multi-class classification tasks is
typically a softmax layer
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Summary: Typical output layers

• Regression

x ∈ X Encoder Linear layer ŷ ∈ Rz ∈ RZ

• Binary classification

x ∈ X Encoder
Logistic
neuron

ŷ ∈ [0, 1]
z ∈ RZ

• Multi-class classification (C classes)

x ∈ X Encoder
Softmax

layer
ŷ ∈ SC

z ∈ RZ

• Multi-label classification (C labels)

x ∈ X Encoder
Logistic
layer ŷ ∈ [0, 1]C

z ∈ RZ
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Multi-layer FNNs
• So far: mostly FNNs without hidden layers

▶ These networks are limited in what they can do
▶ Linear regression, logistic regression, ...
▶ We can improve performance by engineering better features

• In neural networks, hidden layers are generally necessary
▶ Recall: can interpret hidden layers as features for the next layer
▶ By including hidden layers, we aim to let the network “do” the

feature engineering
▶ If there is at least one hidden layer, the network is called a

multi-layer FNN
▶ If more than one (or more than some value L > 1), called deep

x1

x2

x3

x4

ŷ1

ŷ2

ŷ3
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How powerful are multi-layer FNNs? (1)
• Example: multi-layer perceptron (MLP)

▶ Fully connected layers
▶ Number/sizes of hidden layers are hyperparameters
▶ Hidden layers all of same type and non-linear (e.g., logistic neuron)
▶ Output layer is linear (regression) or logistic/softmax (classification)

• How powerful are such networks?
• Consider a basic wide MLP with

▶ D inputs, 1 linear output
▶ One fully-connected hidden layer with Z sigmoidal neurons

• Universal approximation theorem: This wide MLP can
approximate any continuous function on [0, 1]D given sufficiently
(but finitely) many hidden neurons [Cybenko, 1989]

x1

x2

x3

x4

ŷ1
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How powerful are multi-layer FNNs? (2)

• Similar universality results exist for deep MLPs
▶ Any continuous function on [0, 1]D can be approximated arbitrarily

well given sufficiently (but finitely) many hidden layers, each with at
most D + 1 units in each hidden layer [Hanin and Selke, 2017]

• Universal approximation means that “any” function can be
represented
▶ Either via sufficient width or sufficient depth

• But that doesn’t mean that we can learn that function
▶ Training methods may fail to find good parameterization
▶ Overfitting may occur
▶ Number of required units can be exponential in the input

dimensionality
▶ . . .
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Wide or deep?

• Deep models tend to show better generalization performance. . .
▶ . . . for suitable architectures (̸= MLP)
▶ Encode belief that function to be learned involves a composition of

several simpler functions
▶ Interpretation: hidden layer output = intermediate values in a

multi-step computation

• But modern deep models can also be wide. . .
▶ . . . for suitable architectures (̸= MLP)
▶ E.g., T5-Base has maximum width of 3072× number of tokens
▶ E.g., 1000 tokens → width ≈ 3M neurons

• And other considerations also matter; e.g., compute cost,
memory, parallelizability, . . . (more later)

• So, wide or deep? → Both! Depends!

5 / 11
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Example (deep): CNNs
Task: transcribe multi-digit numbers from photographs

CHAPTER 6. DEEP FEEDFORWARD NETWORKS
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Number of parameters ×108
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Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Goodfellow 2014det al. ( ) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network used to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million. This suggests that using a deep model expresses a useful preference over
the space of functions the model can learn. Specifically, it expresses a belief that the
function should consist of many simpler functions composed together. This could result
either in learning a representation that is composed in turn of simpler representations (e.g.,
corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize
them).

203
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Example (wide): Inverted Bottlenecks

• Inverted bottleneck = a wider hidden layer; e.g.,

• MLP that enhances expressivity
▶ Think: a more powerful compute step (in the multi-step

computation interpretation)
▶ Without substantially increasing depth
▶ Without increasing width for subsequent parts of network

• E.g., T5-Base uses 768 → 3072 → 768 “feedforward blocks”
▶ Large maximum width mainly due to these inverted bottleneck

blocks
7 / 11
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Rectified linear neuron (ReLU)

• Also called linear threshold neuron or rectifier

• ϕ(s) = max { 0, s } =

{
s if s ≥ 0

0 otherwise

• Notation:

−4 −2 0 2 4

−
2
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2

4
6

s=wTx + b

y

• Note: again, a non-linear transfer function

• Common non-linearity for intermediate layers in deep NNs
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Rectifier networks

• Rectifier network = MLP with only rectifier units in hidden +
output layers

• Function computed by rectifier network is piecewise linear
▶ Approximates a function by decomposing it into linear regions
▶ Roughly: the more linear regions, the more flexible / expressive

1D example 2D example

9 / 11Wikipedia

https://en.wikipedia.org/wiki/Piecewise_linear_function


Expressivity of rectifier networks
Montúfar et al. (2014) have shown:
• Consider rectifier networks of form

▶ D = input dimensionality (assumed constant)
▶ H = total number of hidden units
▶ L = total number of hidden layers, each of width Z ≥ D

• Number of linear regions at most 2H
▶ → No more than exponentially many linear regions possible

• Number of attainable linear regions at least Ω((Z/D)(L−1)DZD)
▶ Attainable = maximum over all possible parameterizations
▶ Polynomial in Z (width)
▶ Exponential in L (depth)
▶ → Exponentially many linear regions indeed possible

10 / 11
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Rectifier networks and classification
Consider binary classification.
• Take rectifier network and add logistic neuron on top for output
• Each linear region then mapped to two classes separated by a

hyperplane (or to one class only)
• So: part of input space for which model predicts each class is

given by (at most) as many linear regions as rectifier network
• Similar arguments for multi-class classification

Architecture: Input (2) → ReLu (100) → Softmax (3)
11 / 11Source: Notebook of Goku Mohandas

https://madewithml.com/courses/foundations/neural-networks/
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Supervised training of FNNs

• In principle: like any other ML model
• Often: empirical risk minimization (our focus)

▶ Frequentist approach, obtains point estimate θ̂ of FNN parameters θ
▶ Use non-negative, real-valued loss function L(ŷ,y) between a

prediction ŷ and a true answer y
▶ Minimize empirical risk = average loss on training data

{
(xi,yi)

N
i=1

}
Remp(θ) =

1

N

∑
i

L(ŷi,yi) where ŷi = f(xi;θ)

• Some common loss functions
▶ Squared error (for regression)
▶ Log loss / binary cross entropy (for binary / multi-label classification)
▶ Cross entropy / KL divergence (for multi-class classification)
▶ Hinge loss (for margin-based classification)
▶ 0-1 loss / misclassification rate (for classification)

• Generally: use cost function J(θ)
▶ E.g., regularized risk to prevent overfitting
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Gradient-based methods

• Gradient-based methods are dominant
▶ Large datasets, many parameters
▶ Many tricks used to make these methods work empirically

• General approach
1. Construct a batch (e.g., a subset of examples)
2. Compute gradients of cost function on batch
3. Update parameters using an optimizer
4. Repeat
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Training Techniques

• Gradient-based methods are a tool to minimize some cost
function (backpropagation, optimizers)

• Training FNNs successfully is also an art; generally, goals include
▶ Improve performance of gradient-based methods
▶ Reduce overfitting, improve generalizability
▶ Leverage additional data
▶ Reduce (task-specific) costs such as model size, computational

costs, enery consumption, amount of required supervision, . . .

• In this part of the lecture, we look at
▶ Compute graphs, automatic differentiation
▶ Gradient computation via backpropagation (“backprop”): chain

rule + reuse of computations
▶ Optimizers beyond plain SGD
▶ Challenges in gradient-based training (vanishing/exploding

gradients)
▶ Mitigating architectural design patterns and their impact
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Outline (Gradient-Based Training)

0. Overview
1. Backpropagation
2. Optimizers
3. Architecture design
4. Initialization

5 / 7



Summary

• Gradient-based methods dominant for training deep learning
models

• Backpropagation
▶ Technique to compute gradient of a computation w.r.t. its inputs
▶ Computation modeled via a compute graph
▶ Chain rule + reuse of computations
▶ Forward/backward pass to compute all outputs/gradients

• Optimizers
▶ Batch size and learning rate are key hyperparameters
▶ Momentum and adaptive learning rates common

• Architecture design
▶ Vanishing/exploding gradients can be problematic
▶ Architectural choices matter (e.g., non-saturating units, residual

units, skip connections)
▶ Suitable initialization depends on architecture
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Suggested reading

• Drori, Ch. 2, 3

• Goodfellow et al., Ch. 6, 8

• Murphy 1, Ch. 13.3, 13.4

7 / 7
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Backpropagation

• Backpropagation is an algorithm to compute gradients
▶ Origins in the 60s in control theory
▶ Rediscovered many times
▶ Used for neural networks since the 80s

• Given a compute graph, performs
1. Forward pass to compute (all) output(s) (forward propagation)
2. Backward pass to compute (all) gradient(s) (backward propagation)

• For us: compute graph typically represents
▶ Output ŷ of an FNN (given x, θ)
▶ Loss L of an FNN (given (x, y), θ)
▶ Cost function J for an FNN (given { (xi, yi) }, θ)

• And we are interested in gradients (as we will see)
▶ W.r.t. weights (∇θJ): e.g., for gradient-based training
▶ W.r.t. intermediate outputs (∇zL): e.g., for model debugging
▶ W.r.t. inputs (∇xL or ∇xŷ): e.g., for sensitivity analysis or

adversarial training
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Recap: Gradient (ML, 05-2)

• For functions with multiple inputs, there are multiple partial
derivatives; e.g.,

f = x21 + 5x1x2

∂

∂x1
f = 2x1 + 5x2

∂

∂x2
f = 5x1

• We can gather them all in a single vector, the gradient of f

∇x⊤f
def
=
(

∂
∂x1

f ∂
∂x2

f · · · ∂
∂xn

f
)

• For the example above, we obtain

∇x⊤f =
(
2x1 + 5x2 5x1

)
∇xf =

(
2x1 + 5x2

5x1

)
Numerator layout (row) Denominator layout (column)
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Compute graphs
• Backpropagation generally operates on a compute graph
• Directed, acyclic graph that models a computation (as a data

flow program)
• Vertices correspond to operations
• Edges correspond to data passed between operations

(typically tensor-valued)
• Multiple sources (no incoming edge): inputs, weights, . . .
• One sink (no outgoing edge): result

Feedforward neural network

x z1 z2W 1 W 2

Corresponding compute graph

input matmul

weight1

matmul

weight2

result
x z1

W⊤
1 W⊤

2

z2
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Forward propagation (example)

• Compute graph for example output ŷ

input matmul

weight1

matmul

weight2

norm result
x z1

W⊤
1 W⊤

2

z2 ŷ(
1
−2

)
(
−1 1
−1 −1

) (
0 4
1 0

)
(
−3
1

) (
4
−3

)
5

• Forward propagation: inputs → result

• Edges transport values

• For example:
1. Provide inputs x, W⊤

1 , W⊤
2

2. Evaluate first matmul: z1 = W⊤
1 x

3. Evaluate second matmul: z2 = W⊤
2 z1

4. Evaluate norm: ŷ = ∥z2∥
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Forward propagation
• Operators are evaluated in topological order (“forwards”)

▶ Whenever an operator is evaluated, all its inputs must be available
▶ Computation is local: only input values are required (the remainder

of the compute graph does not matter)
• Inputs and/or outputs are generally tensor-valued

▶ E.g., matmul(A,B) = AB takes two 2D tensors and produces a
2D tensor

▶ Note: our visual representation of compute graph does not indicate
which input is A and which is B, but the actual compute graph
does (and must do so)

• Intermediate results may need to be kept
▶ To evaluate subsequent operators
▶ To enable gradient computation with backpropagation

• Parallel processing is possible
▶ Individual operators can be evaluated in parallel (e.g., matmul)
▶ Different operators can be evaluated in parallel (when their

respective inputs are available)
▶ E.g., transformer encoders can operate on all inputs in parallel
▶ E.g., RNN encoders must process inputs sequentially
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Backward propagation (example)
• Backward graph for example output ŷ

input matmul

weight1

matmul

weight2

norm result
δx δz1

δW⊤
1

δW⊤
2

δz2
δŷ(

−2.6
−3.8

) (
−0.6
1.2

)
(
−0.6 1.2
3.2 −6.4

) (
−2.4 0.8
1.8 −0.6

)
(

0.8
−0.6

)
1

• Backward propagation: result → gradients
• Edges transport gradients

▶ Consider edge e and define
δe

def
= gradient of result w.r.t. values on edge e

evaluated at the provided inputs
• For example:

1. Compute all values of forward pass (not shown above)
2. δŷ

def
= ∇ŷresult = ∇ŷ ŷ = 1

3. δz2 (discussed later)
4. δW⊤

2
and δz1

(discussed later)
5. δW⊤

1
and δx (discussed later)
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Backward propagation

• δe
def
= gradient of result w.r.t. values on edge e

• Key insight of backpropagation
▶ Gradients δe can be computed incrementally (akin to forward pass,

but in reverse order)

• Operators are evaluated in reverse topological order (“backwards”)
▶ When operator evaluated, its output gradient(s) must be available
▶ Computation is local: only input values and output gradient(s) are

required (the remainder of the compute graph does not matter)
▶ Recall: intermediate outputs of forward pass required

→ memory consumption (or recompute)

• Gradients are generally tensor-valued
▶ Convention: δe same shape as values on edge e in forward pass

• Intermediate results may need to be kept
▶ To evaluate gradient for prior operators
▶ To debug/analyze models

• Parallel processing is possible (as before)
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Gradient (single univariate function)

input f result
u y

• Result: y = f(u)

• Gradient δy
def
= ∇yresult = ∇yy = 1

• Gradient δu
def
= ∇uresult = ∂

∂uf(u) = f ′(u)

• Example
▶ u = 0, f = σ (logistic function)
▶ y = σ(u) = σ(0)
▶ δu = σ′(u) = σ(u)(1− σ(u)) = σ(0)(1− σ(0))

input σ result
u y

0 0.5
input σ result

δu δy

0.25 1

Forward pass Backward pass
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Gradient (composition of two univariate functions)
• Let’s add another operator g in front

input g f result
v u y

• Result: y = f(u) = f(g(v))
▶ Function composition

• Gradient: δu
def
= ∇uy = ∂

∂uf(u) = f ′(u) = f ′(u)
▶ Same computation as before (but u now output of g)
▶ Need to retain u in forward pass to compute f ′(u)

• Gradient

δv
def
= ∇vy =

∂

∂v
f(g(v)) = g′(v)f ′(g(v))︸ ︷︷ ︸

chain rule

= g′(v)f ′(u)

= g′(v)δu
▶ Observe: that’s a local computation at g
▶ Need: δu → passed backwards from subsequent operators
▶ Need: v → computed in forward pass
▶ Need: g′ → determined by g
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Example

• v = 1, g = log2, f = σ

Forward pass
input log2 σ result

v u y

1 0 0.5

Backward pass

input log2 σ result
δv δu δy

0.36 0.25 1

• δy
def
= ∇yy = 1

• δu
def
= ∇uy = σ′(u)δy = σ(u)(1− σ(u))δy = 0.25 · 1 = 0.25

• δv
def
= ∇vy = log′2(v)δu = 1

v log(2)δu ≈ 1.44 · 0.25 = 0.36
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Gradient (composition of univariate functions)

• This generalizes; e.g., consider n operators

input f1 f2 · · · fn result
z0 = x z1 z2 zn−1 zn = y

• We have

y = fn(fn−1(· · · (f1(x)) · · · ))

• At each operator fi, the required gradient can be computed as
follows:

δzi−1

def
= ∇zi−1y =

∂y

∂zi−1
=

output derivative︷︸︸︷
∂y

∂zi

local derivative︷ ︸︸ ︷
∂zi
∂zi−1︸ ︷︷ ︸

chain rule

= f ′
i(zi−1)︸ ︷︷ ︸

local derivative

· δzi︸︷︷︸
output derivative
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Overall gradient

• Let’s derive an expression for the gradients individually

δzn = 1

δzn−1 = f ′
n(zn−1)δzn = f ′

n(zn−1)

δzn−2 = f ′
n−1(zn−2)δzn−1 = f ′

n−1(zn−2)f
′
n(zn−1)

δzn−3 = f ′
n−2(zn−3)δzn−2 = f ′

n−2(zn−3)f
′
n−1(zn−2)f

′
n(zn−1)

...

• Gradient is product of local gradients along the path from
the result to the resp. edge

• Backpropagation avoids repeated computations by
1. Proceeding backwards
2. Using the chain rule to reuse intermediate results (i.e., the δ-values)
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Gradient (multiple inputs)
• Operators often have multiple inputs; e.g., a simple linear unit

input linear unit

weight

bias

result
x

w

b

y

• In the forward pass, the operator computes

y = f(x,w, b) = wx+ b

• In the backward pass, we compute gradients of result w.r.t. each
edge as before (using the chain rule)

δy = 1

δx = ∇xy = ∇xf(w, x, b) · δy = w · 1
δw = ∇wy = ∇wf(w, x, b) · δy = x · 1
δb = ∇by = ∇bf(w, x, b) · δy = 1 · 1

• → Consider each input separately
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Gradient (multiple outputs)

• Operators may have multiple outputs; e.g., consider
▶ E.g., operator f(x) may output n values, say, z1 = f1(x), . . . ,

zn = fn(x)
▶ Each of these outputs contributes to result y

▶ During backpropagation, we obtain δz1 , . . . , δzn
▶ We are interested in

δx = ∇xy =
∂y

∂x
=

n∑
k=1

output gradient︷︸︸︷
∂y

∂zk

local gradient︷︸︸︷
∂zk
∂x︸ ︷︷ ︸

multivariate chain rule

=

n∑
k=1

local gradient︷ ︸︸ ︷
f ′
k(x)

output gradient︷︸︸︷
δzk

▶ → Consider each output separately and sum up
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Gradient (multiple uses)

• Sometimes an operator’s output is “used” multiple times
▶ E.g., the (single) output of an operator g(x) is used n times
▶ That’s equivalent to a single operator f with n identical outputs

(i.e., z = f(x) = 1ng(x) and thus zk = fk(x) = g(x)), each being
used once

▶ Using the results from the previous slide with f defined in this way:

δx = ∇xy =

n∑
k=1

f ′
k(x)δzk =

n∑
k=1

g′(x)δzk

= g′(x)

n∑
k=1

δzk

▶ → Sum up all incoming δ-values and proceed as before
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Example: logistic regression (2D), N = 2

Forward pass

input1[1]

input1[2]

linear unit

weight1 weight2

σ log loss

label1

input2[1]

input2[2]

linear unit σ log loss

label2

mean cost
J

x11

x12

w1
1 w1

2

η1 ŷ1

y1

l1

x21

x22

w2
1 w2

2

η2 ŷ2

y2

l2

1

−2

−3

4

0.5 −0.6

0.5 −0.6

1.7

−3.9

0.85

0.02

1

0

0.17

0.02

0.09
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Example: logistic regression (2D), N = 2

Backward pass

input1[1]

input1[2]

linear unit

weight1 weight2

σ log loss

label1

input2[1]

input2[2]

linear unit σ log loss

label2

mean cost
δJ

δx11

δx12

δw1
1

δw1
2

δη1 δŷ1

δy1

δl1

δx21

δx22

δw2
1

δw2
2

δη2 δŷ2

δy2

δl2

−0.04

0.05

0.01

−0.01

−0.08 0.15

−0.03 0.04

−0.08

0.01

−0.59

0.51

−0.85

1.95

0.5

0.5

1
δw1 = −0.11 δw2 = 0.19
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Gradient computation in general
• Consider an operator f : RI → RO

• Forward pass: vout = f(vin) with vin ∈ RI and vout ∈ RO

f
vin vout

• Backward pass: δin = Jf (v
in)⊤δout with δout ∈ RO and δin ∈ RI

Jf
δin δout

where we use the Jacobian Jf of shape O × I given by

Jf
def
= ∇v⊤

in
f =

∇v⊤
in
vout
1

...
∇v⊤

in
vout
O

 =


∂

∂vin
1
vout
1 . . . ∂

∂vin
I

vout
1

...
. . .

...
∂

∂vin
1
vout
O . . . ∂

∂vin
I

vout
O


• Intuitively, f ′(vin)δout (for scalars) now becomes Jf (v

in)⊤δout

▶ Can be derived by “rewriting” the discussions on multiple
inputs/outputs from the previous slides into matrix form

• More in exercises and tutorials 19 / 23



Gradient computation in general (example)

• Let x =

(
x1
x2

)
and f(x) =

(
f1(x1, x2)
f2(x1, x2)

)
=

(
ln(x1) + x22

x1x2

)

• Jacobian is Jf =

(
∂

∂x1
f1

∂
∂x2

f1
∂

∂x1
f2

∂
∂x2

f2

)
=

(
1/x1 2x2
x2 x1

)

• Let vin =

(
1
2

)
. Then vout =

(
4
2

)
and Jf (v

in) =

(
1 4
2 1

)
• Let δout =

(
10
100

)
. Then

δin = Jf (v
in)⊤δout =

(
1 2
4 1

)(
10
100

)
=

(
1 · 10 + 2 · 100
4 · 10 + 1 · 100

)
=

(
∂

∂x1
f1(1, 2) · δout

1 + ∂
∂x1

f2(1, 2) · δout
2

∂
∂x2

f1(1, 2) · δout
1 + ∂

∂x2
f2(1, 2) · δout

2

)
=

(
210
140

)
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Example: logistic regression (2D), N = 2

Forward pass

inputs linear unit

weights

σ log loss

labels

mean cost
X

w

η ŷ

y

l J(
1 −2
−3 4

)
(

0.5
−0.6

)
(

1.7
−3.9

) (
0.85
0.02

)
(
1
0

)
(
0.17
0.02

)
0.09

Backward pass

inputs linear unit

weights

σ log loss

labels

mean cost
δX

δw

δη δŷ

δy

δl δJ(
−0.04 0.05
0.01 −0.01

)
(
−0.11
0.19

)
(
−0.08
0.01

) (
−0.59
0.51

)
(
−0.85
1.95

)
(
0.5
0.5

)
1
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Backprop for selected operators (1)
Forward: element-wise op Backward: element-wise derivative

ϕ
v z = ϕ(v)

ϕ
ϕ′(v)⊙ δz δz

Forward: multiply (element-wise) Backward: rescale w/ other

⊙

v1

v2

z = v1⊙v2 ⊙

v2⊙ δz

v1⊙ δz

δz

Forward: matmul Backward: matmul w/ other

matmul

A ∈ Rm×n

v ∈ Rn

z = Av matmul

δzv
⊤

A⊤δz

δz
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Backprop for selected operators (2)
Forward: add Backward: copy

+

v1

v2

z = v1 + v2
+

δz

δz

δz

Forward: copy Backward: add

v
z1 = v

z2 = v

δz1 + δz2

δz1

δz2

Forward: concatenate Backward: split

v1

v2

z = v1∥v2
δv1

δv2

δz = δv1∥δv2
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Recap: gradient descent

• In ML lecture (05-2), we discussed vanilla gradient descent

θt+1 ← θt − ϵtgt,

where gt is the gradient (or estimate) of the objective function
w.r.t. parameters θ at time t (e.g., gt = ∇θJ(θt))

• And its variants for supervised learning
▶ Batch gradient descent: compute exact gradient using all training

examples (high cost, easy to parallizable, exact gradient)
▶ Stochastic gradient descent: estimate gradient using one random

training example (low cost, hard to parallelize, noisy gradient)
▶ Mini-batch gradient descent: estimate gradient using some training

examples (in between; no. examples called batch size)

• Discussion
▶ Simple to implement and parallelize
▶ Suitable for large datasets and models
▶ Can be slow to converge (many epochs)
▶ Happily gets stuck in local minima
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Challenges

• During training, we aim to minimize a potentially highly
non-convex cost function J(θ) → difficult

• To make gradient-based methods work, need
1. Well-chosen training hyperparameters (this part)
2. Suitable network architecture design (next parts)

• Key training hyperparameter choices include
▶ Learning rate
▶ Batch size
▶ Optimizer
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Effect of batch size
• Consider a cost function over training examples D of form

J(θ) =
1

|D|
∑
i∈D

Li(θ),

where Li(θ) is the loss on example i (then: J is empirical risk)

• Suppose we construct each batch B by sampling a fixed number
of examples (uniform iid) and average losses

JB(θ) =
1

|B|
∑
z∈B

Lz(θ) (a random variable)

E[JB(θ)] = J(θ) (since E[Lz] = J)
E[∇θJB(θ)] = ∇θJ(θ) (since E[∇θLz] = ∇θJ)

var [∇θJB(θ)] =
1

|B|
var[∇θLz(θ)] (covariance matrix, ̸= 0)

• For this cost & approach: gradient correct in expectation,
variance decreases with increasing batch size (more in exercises)

4 / 14



Learning rate and batch size (1)
• Example: Projected SGD trajectories for VGG-9 (Li et al. (2018))

▶ Red dot → learning rate reduced

Batch size 128 Batch size 8192
• Batch size small → high variance gradients

▶ Trajectory takes “detours”, regularizing effect

• Batch size large → low variance gradients
▶ Trajectory attracted by “sharp” local minima, empirically often lower

generalization performance (see Keskar et al. (2017))

• Learning rate low → small steps (slow trajectory)
▶ High variance gradient estimates “average out”

• Learning rate high → large steps (fast trajectory) 5 / 14
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Learning rate and batch size (2)
• At time t, we

▶ Compute approximate gradient ĝt (e.g., ĝt = ∇θJBt
(θt))

▶ Perform update θt+1 = θt − ϵĝt

• Fix t and θt (but not Bt) and define
▶ Step length L = ∥ϵE[ĝt]∥ (using expected gradient)
▶ Gradient variance V = var [ĝt]
▶ Both affected by learning rate, batch size, and cost function

• Examples (assuming uniformly iid losses as before)
JB=mean loss JB=sum loss

Compute L V L V

2× learning rate stays 2× stays 2× stays

2× batch size 2× stays 1
2× 2× 2×

2× l. rate, 1
2 batch size 1

2× 2× 2× stays 1
2×

1
2× l. rate, 2 batch size 2× 1

2×
1
2× stays 2×

• Note: expected step length E[∥ϵĝt∥] ≥ L (Jensen’s inquality)
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Learning rate and batch size (3)
• Which learning rate and batch size? → hyperparameter tuning

• Often a learning rate scheduler is used; e.g.,
▶ Large learning rate initially (quickly approach vicinity of optimum)
▶ Smaller learning rate later (slowly approach optimum)

• Smith et al. (2018): can also use a batch size scheduler; e.g.,
▶ Small batch size initially (quickly approach vicinity of optimum)
▶ Larger batch size later (slowly approach optimum)
▶ Advantage: large batch sizes easier to parallize → faster

7 / 14

https://arxiv.org/pdf/1711.00489.pdf


Improving upon gradient descent
• Problem: gradient descent can get stuck in “narrow valleys”

(ill-conditioned Hessian)

Gradient descent Ideal

• Problem: for SGD, gradient estimates ĝt may have high variance
(e.g., point in “wrong” directions)

• Can we do better?
▶ Gradient-based optimizers use ĝt to compute an update term ut

and set θt+1 = θt + ut

▶ Plain GD uses: ut = −ϵĝt
▶ General goal: improve convergence properties 8 / 14Martens, 2010

https://icml.cc/Conferences/2010/papers/458.pdf


Momentum (1)

• Idea: build up velocity in directions that have consistent gradient

• Mitigates two problems: poor conditioning of the Hessian matrix
(narrow valleys) and variance in the stochastic gradient

• Method of momentum (heavy-ball method; Polyak, 1964) uses
exponentially-decaying moving average of negative gradient

vt ← γvt−1 − ϵgt

θt+1 ← θt + vt

▶ Think of v as velocity
▶ Hyperparameter γ ∈ [0, 1) referred to as momentum
▶ Speed (norm of update) increased up to 1

1−γ× w.r.t. GD step
▶ ϵ/(1− γ) called effective learning rate

9 / 14Du, 2019

https://www.sciencedirect.com/science/article/abs/pii/0041555364901375
https://iopscience.iop.org/article/10.1088/1742-6596/1229/1/012046


Momentum (2)

• Variant: Nesterov momentum
▶ Apply momentum update before computing gradient

vt ← γvt−1 − ϵ∇θJ(θt+γvt−1)

θt+1 ← θt + vt

• Nesterov (1983) showed: for convex functions (unique global
optimum, Lipschitz) and batch gradients, convergence rate
improves from O(1/t) to O(1/t2)
▶ Does not apply to SGD, however
▶ Cost functions in DL are generally not convex
▶ But: bounds often loose, in practice much better performance

• Requires additional memory to store velocity v
▶ Velocity v is of same size as model parameters θ
▶ Can be substantial for large models
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http://proceedings.mlr.press/v28/sutskever13.html
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Adaptive learning rates
• So far: fixed learning rate for all parameters

• Adaptive learning rate: use per-parameter learning rate
▶ Smaller learning rate for sensitive parameters (large derivative)
▶ Larger learning rate for insensitive parameters (small derivative)

• Example: Adagrad (Duchi, 2011)

rt ← rt−1 + gt⊙ gt (sum of sq. gradient)

θt+1 ← θt −
ϵ

δ +
√
rt
⊙ gt (rescale learning rate)

▶ Learning rate reduced over time, more so for parameters with larger
derivatives

▶ Good theoretical properties for convex functions
▶ For deep learning, deduction can be too quick initially

• Adadelta and RMSProp (Hinton 2012) are variants that use
exponentially-decaying moving average of sq. derivatives

• Requires additional memory to store r
(same size as model parameters θ) 11 / 14

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
https://arxiv.org/abs/1212.5701


Example (click to animate)

12 / 14Alec Radford

https://cs231n.github.io/assets/nn3/opt2.gif


Discussion

• Optimizers that use adaptive learning rates are popular

• Momentum and adaptive learning rates can also be combined
▶ E.g., Adagrad or RMSProp with momentum, Adam, NAdam,

AMSGrad, AdamX, AdamW, RAdam
▶ Yet higher memory consumption (velocity and per-parameter LR)

• No best optimizer → hyperparameter

• In PyTorch, many optimizers provided
▶ E.g., SGD and Adagrad (w/ and w/o momentum), Adam, . . .
▶ See https://pytorch.org/docs/stable/optim.html
▶ Generally, called after backward pass

• More in lecture Optimization in Machine Learning by Simon
Weissmann (lecture notes, slides)
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https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://arxiv.org/abs/1904.09237
https://arxiv.org/abs/1904.03590
https://arxiv.org/abs/1711.05101
https://arxiv.org/pdf/1908.03265.pdf
https://pytorch.org/docs/stable/optim.html
https://www.wim.uni-mannheim.de/doering/teaching/past-semesters/hws24/optimization-in-machine-learning/
https://www.wim.uni-mannheim.de/media/Lehrstuehle/wim/doering/OptiML/Sheets/lecture_notes.pdf
https://www.wim.uni-mannheim.de/media/Lehrstuehle/wim/doering/OptiML/Sheets/main.pdf


Example: PyTorch
# define model with one hidden layer
model = torch.nn.Sequential(

torch.nn.Linear(dim_in, dim_hidden),
torch.nn.ReLU(),
torch.nn.Linear(dim_hidden, dim_out),

)

# define loss function (mean squared error)
loss_fn = torch.nn.MSELoss()

# pick optimizer (Adam)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

# run for 500 epochs
for t in range(500):

y_pred = model(X) # forward: model output (X = examples)
loss = loss_fn(y_pred, y) # forward: loss (y = labels)
model.zero_grad() # clear old gradients
loss.backward() # backward: compute gradients
optimizer.step() # update parameters
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Cost functions of deep models
Consider cost function J(θ) for some deep model:
• Non-convexity

▶ Can have a large number of local minima
▶ Problematic if local minima have much higher cost than optimum
▶ Can show: in many classes of random functions, this is unlikely

when dimensionality is high

• Non-identifiability
▶ Many different equivalent parameter choices

(= one reason for the large number of local minima)
▶ E.g., in any MLP layer, can swap two units and corresponding

weights (weight space symmetry)
▶ E.g., in ReLU unit, can scale input weights by c and “output

weights” by 1/c

• Many saddle points
▶ Can show: in many classes of random functions, number of saddle

points compared to local minima grows exponentially with
dimensionality

▶ May slow down learning
2 / 24

https://arxiv.org/abs/1406.2572
https://arxiv.org/abs/1406.2572


Come on, how bad can it be?
Visualization of cost landscape of by Li et al. (2018)
• Minimizer found during training in center

• Cost visualized along two random directions (in parameter space)

• More at losslandscape.com

VGG-56 VGG-110

(naming scheme: architecture – depth)

3 / 24

https://arxiv.org/abs/1712.09913
https://losslandscape.com/
https://arxiv.org/pdf/1409.1556v6.pdf


Vanishing gradient problem
• Consider an activation function ϕ and recall:

Forward Backward

ϕ
v z = ϕ(v)

ϕ
ϕ′(v)δz δz

• Vanishing gradient problem
▶ If ϕ′(v) < 1, the gradient becomes smaller
▶ If this happens in consecutive layers, the gradient vanishes

exponentially fast with depth (since local gradients multiply)
▶ If ϕ′(v) ≈ 0, gradient barely passes through (saturated unit)
▶ If ϕ′(v) = 0, gradient is gone right away (dead unit)

• Problematic since prior layers receive no useful gradient signal
▶ E.g., consider a weight vector w used in a prior layer

→ ∇wJ ≈ 0 → gradient-based learning fails (weight not updated)
▶ E.g., consider input x and corresponding output ŷ of a network

→ ∇xŷ ≈ 0 → output insensitive to input changes

• Problem also arises with other layers
(e.g., linear layers → exercise)
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Example: Logistic activation function
• Forward: σ(v) = (1 + exp(−v))−1 ∈ [0, 1]
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v

σ
(v

)
0.

0
0.

5
1.

0

• Backward: σ′(v) = σ(v)(1− σ(v)) ∈ [0, 0.25]
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v

σ
'(

v)
0.

0
0.

5
1.

0

The logistic unit is not well suited as a hidden layer unit since:
• σ(0) = 0.5 → zeros not “passed through”

• σ′(v) ≤ 0.25 → gradients always reduce by at least 1/4

• Saturated when |v| ≥ 5
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Better: tanh activation function
• Forward: tanh(v) = (exp(2v)− 1)/(exp(2v) + 1) ∈ [−1, 1]
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• Backward: tanh′(v) = 1− tanh(v)2 ∈ [0, 1]
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• tanh(0) = 0 → zeros “passed through”
• tanh′(0) = 1 → gradients around zero “passed through”
• Saturated when |v| ≥ 3 6 / 24



Example: ReLU activation function

• Forward: relu(v) = max(0, v) ∈ [0,∞)

−4 −2 0 2 4
v

re
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(v
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0

1

• Backward: relu′(v) = I(v > 0) ∈ { 0, 1 } for v ̸= 0
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v
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'(
v)

0.
0

1.
0

• relu(0) = 0 → zeros “passed through”

• relu′(v > 0) = 1 → gradients “passed through”

• relu′(v < 0) = 0 → gradients gone right away (dead)
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Related activation functions (forward)
The problematic behaviour of ReLU for negative values (esp. around
0) has motivated a number of related functions:

ReLU Leaky ReLU (α = 0.1)
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Exponential LU (ELU) Gaussian Error LU (GELU) / Swish
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4

GELU
SiLU / Swish(1)
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https://arxiv.org/pdf/1710.05941v2.pdf


Related activation functions (backward)
The problematic behaviour of ReLU for negative values (esp. around
0) has motivated a number of related functions:

ReLU′ Leaky ReLU′ (α = 0.1)
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https://arxiv.org/pdf/1606.08415v5.pdf
https://arxiv.org/pdf/1710.05941v2.pdf


Discussion (activation functions)
Some desirable properties of activation functions include:
• Non-linearity → needed for expressiveness

• Differentiability → enables gradient-based learning

• Zeros pass through → avoids need to “learn” zero outputs

• Approximates linear unit around 0 → mitigates vanishing gradient

• Gradients bounded from above → stability

• Low computational cost → (Leaky) ReLU wins here

• As usual, choice depends
▶ ReLU very common (e.g., MLPs, CNNs, transformers)
▶ Variants of ReLU beneficial and also common
▶ σ uncommon, but has special uses (e.g., as output unit, for gating)
▶ tanh perhaps most traditional choice for MLPs
▶ tanh also used for normalization purposes (squash a signal into

[−1, 1] range)
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Results from Ramachandran et al. (2017)

Image classification (ImageNet 2012)

Machine Translation (WMT 2014)
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https://arxiv.org/pdf/1710.05941v2.pdf
https://www.image-net.org/challenges/LSVRC/2012/
https://statmt.org/wmt14/translation-task.html


Exploding gradient problem

• Consider an activation function ϕ and recall:
Forward Backward

ϕ
v z = ϕ(v)

ϕ
ϕ′(v)δz δz

• Exploding gradient problem
▶ If ϕ′(v) > 1, the gradient becomes larger
▶ If this happens in multiple consecutive layers, the gradient explodes

exponentially fast (since local gradients multiply)

• Problematic since output extremely sensitive to prior layers
▶ E.g., consider a weight vector w used in a prior layer

→ ∇wJ very large → gradient-based learning fails (weight diverges)
▶ E.g., consider input x and corresponding output ŷ of a network

→ ∇xŷ large, model predictions are unstable

• Usually does not occur due of the activation functions, but due
to other layers (e.g., linear layers → exercise)
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Architectural design patterns

• Degradation problem: performance of MLPs tends to
deteriorate beyond a certain depth
▶ Complicated optimization landscape
▶ Gradients may vanish/explode exponentially fast with increasing

depth in MLP
▶ Can be mildened by choice of suitable activation function, but not

by much

• Coming up: architectural design patterns
▶ Key idea: modify the network architecture to mitigate training

challenges → better empirical performance

• Goals include
▶ Mitigate the vanishing gradient problem and, more generally,

improve gradient flow through network
▶ Facilitate training and effectiveness of (very) deep networks, i.e.,

mitigate the degradation problem
▶ Simplify the optimization landscape
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Representation view
• Consider a parameterized layer f : RZ → RZ somewhere in an FNN

f
vin vout

▶ E.g., vout = f(vin) = ϕ(W⊤vin + b)
▶ Note: layer parameters not explicitly shown

• Representation view
▶ vin is representation of input obtained from previous layer
▶ vout is updated representation of input for next layer
▶ A “step” in a multi-step computation
▶ How many steps? ≈ network depth (L)
▶ How much memory? ≈ network width (Z)

• Observe: If vin is already a good representation, model needs to
learn to preserve it
▶ E.g., with linear units (ϕ(x) = x), must learn W = I and b = 0
▶ Generally, with non-linear units, more involved → exercise

• The deeper the network is, the more this matters
→ One reason for the degradation problem
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Residual connections (forward)

• Residual connections (He at al. 2015/2016) change the layer:

f

+
vin

u

vout

▶ I.e., vout = vin + f(vin)
▶ Think of u = f(vin) as an update or residual

• Recall: If vin is already a good representation, model needs to
learn to preserve it
▶ Now “easy” to do: need to learn a zero update (u = 0)
▶ Usually obtained by zeroing out all layer parameters
▶ E.g., when f = ϕ(W⊤

l v
in + bl) and ϕ(0) = 0

▶ Lowest regularization penalty (e.g., with ℓp regularization)
▶ Likewise, “easy” to perform smaller updates

• Reduced degradation of performance due to “too many” layers
▶ Easy for the network to learn identity mappings (all weights 0)
▶ Easy for network to not use “unnecessary” layers
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https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1603.05027.pdf


Residual connections (backward)

• Let’s look at the backward pass

f

+
δin

δupdate

δout

• We obtain

δin = δout + δupdate

▶ During backward pass, gradient is “updated” as well

• After L such layers, gradient is

δin = δout + δupdate
L + · · ·+ δupdate

1

• Original gradient “passes through” → addresses vanishing
gradient problem
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Using residual connections
• Input and output dimensionality of f must match

▶ But can use different dimensionality “in between”
▶ Common choice: f = W⊤

2 ϕ(W
⊤
1 v

in)
▶ E.g., T5-Base: 768D in → project up to 3072D → activation →

project back down to 768D

• We’ll see residual connections through the lecture; e.g.,
▶ In recurrent neural networks: e.g., LSTM or GRU units
▶ In convolutional neural networks: e.g., ResNet
▶ In sequence models: e.g., Transformers

Example: ResNet on CIFAR-10 (as of 2015)
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https://arxiv.org/pdf/1910.10683.pdf
https://direct.mit.edu/neco/article/9/8/1735/6109/Long-Short-Term-Memory
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1706.03762


Skip connections

• More generally, skip connections (also: shortcut connections)
skip one or more layers

f

combine
vin

vnew

vout

▶ Here we “skip” over a single layer f
▶ Original representation vin and the new representation vnew are

combined

• For residual blocks, we combine by adding
▶ We can then think of vnew as an “update”

• Other common options include: concatenate (now); average,
max-pooling, attention (later)
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Concatenating skip connections (1)
• One option is to concatenate representations

• Extreme case: concatenate all representations of previous layers

f1 f2 f3 f4
vin vout

• Preservation of information across layers trivial
▶ Since directly provided as additional input
▶ Each layer merely “enhances” the current representation (increases

effective dimensionality)

• Suppose each layer produces Z-dimensional output and is
parameterized by one weight matrix
▶ Layer l has lZ inputs → increases linearly with L
▶ Weight matrices have form lZ × Z → increase linearly with L
▶ Total number of weights is Z2 · L(L+ 1)/2

→ increases quadratically with L 19 / 24



Concatenating skip connections (2)

• Examples: DenseNet (images), JK-Net (graphs)

• Interestingly, concatenating skip connections can reduce cost

▶ Why? Can get away with much smaller per-layer output size (Z)
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https://arxiv.org/abs/1608.06993
https://arxiv.org/pdf/1806.03536.pdf


Concatenating skip connections (backward)

• Let’s look at the backward pass

f1 f2 f3 f4
δin δ1

δ2

δ3

δ4

δout

• After L such layers, gradient is

δin = δL + · · ·+ δ1

▶ Again, gradient from later layers is directly passed through
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Impact on optimization landscape

VGG-56 VGG-110

ResNet-56 DenseNet-110
(residual) (skip concat)

22 / 24Li et al. (2018)

https://arxiv.org/pdf/1409.1556v6.pdf
https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/abs/1712.09913


Batch normalization

• Batch normalization (BN) is a layer that mitigates two problems
1. Covariate shift: when parameters of one layer change, the

(training distribution of) inputs to the next layer changes too
→ ignored by gradient-based methods

2. Gradient magnitudes may vary wildly across layers
→ complicates gradient-based learning

• During training, BN normalizes each of its input features to zero
mean and unit variance within each batch
▶ I.e., input z ∈ RZ is normalized to output z̃ = (z − µ)/

√
σ2,

where µ,σ2 ∈ RZ are computed from the entire batch
▶ Important: this normalization is part of the “action” of the layer and

the gradient is backpropagated through these operations
▶ Variant: normalize to mean β and variance γ, where β and γ are

learned parameters

• At test time, use running average of µ and σ2 from training

• Strong empirical performance
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http://proceedings.mlr.press/v37/ioffe15.html


Layer normalization
• Batch normalization sometimes problemantic

▶ During training, batch size must be sufficiently large (e.g., no online
learning possible)

▶ When number of layers is not fixed but depends on input (e.g.,
RNN, Transformer), number of required mean/variance statistics
varies with input lengths

• Layer normalization (LN) is a simple alternative
▶ BN: normalize each input feature across the mini-batch (columns)
▶ LN: normalize each input vector individually (rows)
▶ For input z, set

norm(z) =
z −mean(z)√

var(z)
,

where mean/variance are computed across the elements of z
• Normalization methods differ in their invariance properties
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Initialization

• Initialization = choose starting value for all parameters

• Important since
▶ Affects solutions found by gradient-based optimizers
▶ Affects performance of gradient-based optimizers

• Suitable choice generally depends on archiceture

• Generally, in standard MLP, initializing weight matrices with
▶ Too small values → vanishing gradient
▶ Too large values → exploding gradient
▶ Constant values → bad solution
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Zero initialization

• Consider a standard MLP (no skip conn.) with layers of form

Forward Backward

matmul ϕ
z ∈ RI s ∈ RO

W⊤

a ∈ RO

matmul ϕ
δz = Wδs δs

δW = δsz
⊤

δa

where W ∈ RI×O

• Zero initialization (W = 0) is problematic
▶ If W = 0, so is δz
▶ If δa = c1, all weight vectors (rows of W ) receive same gradients
▶ E.g., happens when all weight matrices are zero-initialized
▶ Consequence: all units at each layer always have the same output

(co-adaptation) → learning fails

• Likewise: initialization with constant problematic
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Normal initialization (1)

• Normal initialization: W I×O initialized using iid. samples from
a normal distribution N (0, σ2)

• Analysis (forward)
▶ Suppose that z ∈ RI ∼ N (0, I) has standard normal distribution;

then

E[zk] = 0 and var[zk] = 1

▶ Let s = W⊤z ∈ RO; then

E[sk] = 0 and var[sk] = Iσ2

▶ Variance increases with increased input dimensionality
▶ Depending on ϕ can lead to vanishing/exploding gradients

• Solution: initialize with samples from N (0, σ2/I)
→ variance retained
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Normal initialization (2)

• Analysis (backward)
▶ Suppose that δs ∈ RO ∼ N (0, I) has standard normal distribution;

then

E[δsk ] = 0 and var[δsk ] = 1

▶ Let δz = Wδs ∈ RI ; then

E[δzk ] = 0 and var[δzk ] = Oσ2

▶ Variance increases with increased output dimensionality
▶ Depending on ϕ can lead to exploding gradients

• Solution: initialize with samples from N (0, σ2/O) → variance
retained
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Xavier/Kaiming initialization

• Generally, for MLPs, vanishing/exploding gradients mitigated at
the start when variances retained across layers
▶ Forward (use σ2/I) and backward pass (use σ2/O) affected

differently
▶ Need compromise

• For ϕ = tanh or linear: Xavier initialization
▶ Also: Glorot initialization
▶ Samples from

N (0, 1/D) or U(−
√
3/D,

√
3/D),

where D = (I +O)/2

• For other activation functions, can multiply by gain
▶ E.g., for relu:

√
2 (Kaiming initialization, also He initializiation)
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Discussion
• Initialization generally important

• Suitable scale matters for standard MLPs and depends on
dimensionality

• Different for other architectures; e.g.,
▶ Scaling less influential when layer/batch/weight normalization is

used
▶ For residual layers, typically want weight matrix to be small

→ small update / initially close to identity
▶ For ResNet (vision), may use Fixup normalization

• As usual: it depends → experience, hyperparameter search, . . .
7 / 7
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One-hot encoding

• How can we handle categorical inputs and outputs in FNNs?

• Recall: one-hot encoding for categorical inputs
▶ Encode with binary vector with one element per category
▶ Element that corresponds to actual value set to 1; rest 0
▶ Example: x ∈ { red, green, blue }
▶ Then x = green becomes x =

(
0 1 0

)T
• So just one-hot encode? Usually not explicitly since

▶ Not efficient (increased compute cost)
▶ Limited parameter sharing (decreased quality)

• How to do better? → this lecture
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Outline (Layers for Categorical Data)

0. Overview
1. Embedding and softmax layers
2. Word vectors (example)
3. Softmax with many classes

3 / 4



Summary

• Embedding layers for categorical data
▶ Standard approach to handle categorical data

(e.g., PyTorch Embedding)
▶ Directly store embeddings for each category
▶ Low-dimensional, continuous representations

• Word vectors
▶ Simple approach to obtain word representations
▶ Outdated but instructive
▶ CBOW: trained such that words can be reconstructed from average

word vectors of neighboring words

• Softmax with many classes is expensive
▶ Often prohibitively so → many approaches
▶ For training: e.g., hierarchical softmax, negative sampling
▶ For prediction: e.g., approximate maximum inner product search
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Embedding layer (1)
• Consider an FNN with a single categorical input

▶ Vocabulary V = { 1, . . . , V } = set of categories
▶ Input v ∈ V, one-hot encoded to ev ∈ { 0, 1 }V

(where ev is v-th standard basis vector)
▶ Fully-connected first layer with Z hidden units

· · ·

Categorical input
(one-hot encoded)

x = ev

Hidden
representation

zv

Downstream
network

• Downstream network sees zv, but not v or ev
▶ Input v represented by zv
▶ What can we say about zv?
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Embedding layer (2)
• Action of first layer

▶ Weight matrix W ∈ RV×Z =
(
w1 w2 · · · wZ

)
=




o⊤1
o⊤2
...
o⊤V


▶ Bias vector b ∈ RZ

▶ Activation function ϕ
▶ Layer output

v ∈ V → zv ∈ RZ = ϕ(W Tev + b) = ϕ(ov + b)

def
= emb(v)

• An embedding layer directly stores embeddings (no computation)
▶ Maps each category v ∈ V to a vector emb(v) ∈ RZ , the

embedding of v
▶ Parameterized by an V × Z embedding matrix E
▶ Given categorical input v, outputs v-th row of E: emb(v) = E⊤v:
▶ This is more efficient than modelling via fully-connected layer
▶ Variant: normalize embeddings (e.g., to unit norm)

• Examples: categories in tabular data, tokens in NLP, vertices in
graphs

3 / 15



Discussion

• Embedding layers may use large vocabularies (V ≫ Z)
▶ Canonical example: words or tokens of text data

(V is tens of thousands, Z is a few hundreds)
▶ Input ev is sparse, discrete, high-dimensional
▶ Embedding emb(v) is dense, continuous, low-dimensional
▶ Layer performs dimensionality reduction / compression

• Many parameters for large vocabularies
▶ Glove word vectors: 2M× 300 ≈ 2300MB
▶ LLaMa-7B language model: 32k× 4096 ≈ 512MB
▶ ComplEx embeddings on Wikidata-5M: 5M× 128 ≈ 2400MB
▶ In some models, significant fraction of parameters resides in initial

embedding layer

• When multiple inputs use the same categories, embedding layer is
typically shared
▶ E.g., all of the examples above (for words, tokens, entities, resp.)
▶ Example of parameter sharing across layers (more later)
▶ Note: that’s different from one-hot encoding each input

4 / 15

https://nlp.stanford.edu/projects/glove/
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1606.06357
https://deepgraphlearning.github.io/project/wikidata5m


Similarity

• Consider two categories v1 ̸= v2
▶ Cosine similarity between ev1 and ev2 is 0
▶ Cosine similarity between emb(v1) and emb(v2) generally ̸= 0
▶ When > 0: categories similar in embedding space
▶ When < 0: categories dissimilar in embedding space
▶ Embeddings expose similarities

• Intuitively, two categories should be similar in embedding space
when they have similar impact on final output
▶ Directly encouraged when training embedding layer as part of FNN
▶ Indirectly (i.e., hopefully) when embedding layer is pretrained on

other data (e.g., word vectors)

5 / 15



Example: Word Vectors
Top-30 closest word2vec vectors to “God”, trained on the Bible

6 / 15textminingonline.com (now offline)

https://arxiv.org/abs/1301.3781


Embeddings as representations

• Recall from 02-1: DL as an approach to learn features
▶ Input objects x ∈ X are transformed into dense, continuous,

low-dimensional representations called embeddings z ∈ RZ
▶ Z = embedding dimensionality
▶ Useful to represent complex objects (categorical data, textual data,

graph data, tabular data, images, . . . )
▶ Think: complex to work with objects, simple to work with

embeddings
▶ Useful embedding space = goal of representation learning

• Embedding layers used for categorical “non-divisible” objects
▶ Directly learn embedding for each category

• For “divisible” objects, use an encoder
▶ Embeddings are compositional, i.e., constructed from parts of the

object, e.g., by another neural net → exploit structure of the object
▶ E.g., Document embeddings, image embeddings, graph embeddings, . . .
→ Later lectures
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t-SNE (1)
• Embedding spaces are high dimensional and difficult to visualize

• t-SNE (t-distributed Stochastic Neighbor Embedding) is popular
approach
▶ Maps embedding space (or any other high-dimensional input space)

to 2D/3D space such that “close neighborhoods” are
approximately retained (non-linear mapping)

▶ Resulting 2D/3D representations can then be visualized

• What’s close? Similarity of embeddings zj to given embedding
zi measured with isotropic Gaussian kernel with bandwidth σi
(data-point specific; cf. ML 08/1):

sim(zj |zi) = exp(−∥zj − zi∥2/σ2i ) ∈ [0, 1]

• Used to define neighbor distribution over all embeddings j ̸= i

p(j|i) ∝ exp(−∥zj − zi∥2/σ2i ) for j ∈ { 1, . . . , N } \ { i }
▶ Bandwidth σi controls number of effective neighbors
▶ Small bandwidth → few neighbors (p(j|i) concentrated)
▶ Large bandwidth → many neighbors (p(j|i) spread out) 8 / 15

https://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf


Perplexity
• Let Hi be the Shannon entropy of neighbor distribution p(j|i)
→ Intuitively: number of effective neighbors of data point i in

bits (recall: depends on σi)

• Let perplexity Pi = 2Hi

→ Intuitively: number of effective neighbors of data point i
• Consider a dataset with 4 examples. For example i = 4, let 1, 5,

20 be the Euclidean distances of examples j = 1, j = 2, and
j = 3 to example 4, respectively.

• Small bandwidth (σ24 = 3)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

▶ Similarities: 0.72, 0.00, 0.00 → distribution p(j|4): 1.00, 0.00, 0.00
▶ Entropy: Hi ≈ 0 → perplexity: Pi ≈ 1

9 / 15



• Medium bandwidth (σ24 = 75)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

▶ Similarities: 0.99, 0.72, 0.00 → distribution p(j|4): 0.58, 0.42, 0.00
▶ Entropy: Hi ≈ 1 → perplexity: Pi ≈ 2

• Large bandwidth (σ24 = 10000)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

0.5

1.0

▶ Similarities: 0.99, 0.99, 0.96 → distribution p(j|4): 0.34, 0.34, 0.32
▶ Entropy: Hi ≈ 1.58 → perplexity: Pi ≈ 3

Fixed perplexity → fixed number of effective neighbors.
10 / 15



t-SNE (2)
• t-SNE uses a target perplexity P as hyperparameter

▶ Typically set to 5–50
▶ σ2

i chosen such that Pi = P (i.e., σi different for each i)

• In 2D/3D space, t-SNE uses the Cauchy distribution instead
▶ Heavier tails than Gaussian kernel
▶ Consequence: (more) ok if embeddings with “moderate” similarity

are far in 2D/3D space

Gradient of t-SNE

• Fit via gradient descent (w/ momentum), using KL divergence
loss between the neighborhood distributions in embeddings space
and in 2D/3D space → only effective neighbors matter (!) 11 / 15

https://en.wikipedia.org/wiki/Cauchy_distribution


Example (6000 MNIST handwritten digits;
28× 28 = 784D→ 2D)

12 / 15

http://yann.lecun.com/exdb/mnist/


t-SNE (discussion)

• Popular, useful method
▶ Can visualize sets of inputs, embeddings, weight vectors, . . .
▶ Transductive (i.e., visualizes a fixed set)

• Hyperparameters matter
▶ Perplexity can have significant impact on result
▶ t-SNE is an iterative algorithm → don’t stop too early
▶ Learning rate has a significant impact, too
▶ Repeated runs of t-SNE may produce (very) different results

• Interpretation is tricky
▶ Sole goal: close data points in embedding space should stay close
▶ Distances, “cluster sizes,” and “cluster locations” in t-SNE

plot often meaningless
▶ Patterns visible in t-SNE plot may not be real patterns
▶ Helpful: experiment with different choices of perplexity

• See Wattenberg et al. (2016) for examples and discussion

13 / 15

https://distill.pub/2016/misread-tsne/


Recall: Softmax layer
• Recall: softmax layers for classification (categorical outputs)

▶ C classes, input z ∈ RZ from the previous layer

▶ Softmax layer computes ŷ = S

(
W⊤z + b

T

)

▶ η =W⊤z + b contains softmax scores of each class
▶ ŷ ∈ SC contains predicted class probabilities
▶ T ∈ R+ is a hyperparameter known as the temperature
→ Controls smoothness of distribution

▶ As T → 0, the resulting distribution concentrates around the largest
softmax score → most likely prediction

4.2. Gaussian discriminant analysis 103

−2 0 2

−2

0

2

Parabolic Boundary

(a)

−2 0 2 4 6

−2

0

2

4

6

8
Some Linear, Some Quadratic

(b)

Figure 4.3 Quadratic decision boundaries in 2D for the 2 and 3 class case. Figure generated by
discrimAnalysisDboundariesDemo.
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0.4
T=100

1 2 3
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0.5

1
T=1

1 2 3
0

0.5

1
T=0.1

1 2 3
0

0.5

1
T=0.01

Figure 4.4 Softmax distribution S(η/T ), where η = (3, 0, 1), at different temperatures T . When the
temperature is high (left), the distribution is uniform, whereas when the temperature is low (right), the
distribution is “spiky”, with all its mass on the largest element. Figure generated by softmaxDemo2.

4.2.2 Linear discriminant analysis (LDA)

We now consider a special case in which the covariance matrices are tied or shared across
classes, Σc = Σ. In this case, we can simplify Equation 4.33 as follows:

p(y = c|x,θ) ∝ πc exp

[
μT

c Σ
−1x− 1

2
xTΣ−1x− 1

2
μT

c Σ
−1μc

]
(4.34)

= exp

[
μT

c Σ
−1x− 1

2
μT

c Σ
−1μc + log πc

]
exp[−1

2
xTΣ−1x] (4.35)

Since the quadratic term xTΣ−1x is independent of c, it will cancel out in the numerator and
denominator. If we define

γc = −1

2
μT

c Σ
−1μc + log πc (4.36)

βc = Σ−1μc (4.37)
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Interpreting softmax layers
• Let’s assume no bias and T = 1

ŷ = S(W⊤z)

• Class probabilities implicitly determined by softmax scores

ηc = w
⊤
c z = ∥z∥ ∥wc∥ cos∠(wc, z)

• Consider some input z (arbitrary, but fixed)
▶ ∥z∥ acts as “inverse temperature”
▶ Corresponding temperature is T = 1/ ∥z∥
▶ Norm of z controls uniformity of softmax distribution

• Suppose all weight vectors have unit norm (∥wc∥ = 1)
▶ Softmax layer then measures the similarity between input z and

each class vector wc

• When weight vectors have different norms, then ∥wc∥ acts as
coefficient of proportionality (think: class weight)

• If we had a bias term, then bias serves as a priori softmax
score (since then ηc = w⊤

c z + bc; think: class prior)
15 / 15
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Word vectors (1)

• Now: word vectors (or word embeddings)
▶ An example of using embedding layers and a softmax layer
▶ (Was) used to represent words in a variety of NLP tasks
▶ Simple and effective
▶ Not really relevant anymore, but instructive example
▶ And: key ideas relevant later (starting from 05)

• Word vectors (distributed word representations) map words to
continuous representations; goals:
1. Capture semantic similarity between words, i.e., provide similar

representations for words that have similar meanings
(e.g., “God” and “Lord”)

2. Compositionality to obtain sequence representations

• Pretrained on large text corpora

• Why use word vectors? As before, downstream models then
▶ Have significantly less parameters to train (recall: Z ≪ V )
▶ Uses “meaning” of words, not words themselves
▶ Can handle words unseen in downstream training data

2 / 6

https://openreview.net/pdf?id=SyK00v5xx


Word vectors (2)

• How to obtain word vectors?
▶ Distributional hypothesis in linguistics states that words that

occur in similar contexts tend to have similar meanings
▶ Key idea: train word vectors such that words that appear in similar

contexts have similar representations
▶ Under this hypothesis: similar representation → similar meaning

• Example: continuous bag-of-words (CBOW) model
▶ Task: predict missing word given the set of surrounding words

(= context)
▶ Hyperparameter Z: size of word vector
▶ Hyperparameter W : size of left/right context

3 / 6

https://arxiv.org/abs/1301.3781


CBOW (1)
Task: predict current word wt given its 2W surrounding words
(= context).

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

       INPUT         PROJECTION         OUTPUT

w(t)

          INPUT         PROJECTION      OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

                   CBOW                                                   Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R × 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)−vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5

4 / 6Mikolov et al., 2012

https://arxiv.org/abs/1301.3781


CBOW (2)
• How to read this architecture?

• Input layer
▶ Maps words to word vectors (each of the 2W words separately) via

an embedding layer
▶ Embedding matrix E ∈ RV×Z shared across context words

→ parameter sharing
▶ Note: embedding layer in NLP literature often implicit

(i.e., not explicitly drawn, as in previous slide)

• Sum layer
▶ Takes 2W embeddings and sums element-wise (composition)

→ Z-dimensional continuous representation of context
▶ Note:

∑
i ewi

= word counts → bag-of-words
▶ Note:

∑
i emb(wi) = word vector sums → “continuous” bag-of-words

• Output layer
▶ Softmax, trained to predict wt (C = V classes)
▶ Parameterized by weight matrix W ∈ RZ×C

(note: ignored for downstream models, i.e., only E used)
▶ Again: softmax layer often implicit when categorical output
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Discussion
• Recall key idea: train word vectors such that words that appear in

similar contexts have similar representations

• Context representation z is a bottleneck
▶ Z-dimensional representation of 2WV -dimensional context
▶ Forces “compression”, exposes similarities

• Representation z should be “useful” to predict missing word
▶ Recall: softmax score ηc of word c proportional to (cosine)

similarity of context representation z and weight vector wc

▶ All contexts of word c ideally represented by a vector z similar to wc

→ Exposes context similarities
▶ Since z is composed of word vectors, the word vectors implictly

expose word similarity

• Training
▶ Slide window over text corpora, optimize loss (e.g., CE)
▶ In practice, skip-gram model tends to work better (given current

word, predict context words)
▶ Cheap except the softmax layer (!)

→ CBOW uses “hierarchical softmax”
6 / 6
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Softmax with many classes

• Consider a softmax layer with C outputs (p) and Z inputs from
the previous layer (z). We have

pc = S(W⊤z + b)c =
exp(⟨wc, z⟩+ bc)∑
c′ exp(⟨wc′ , z⟩+ bc′)

.

• During training, given example (x, y)
▶ Need to compute output during forward pass

py = p(y|x,θ) = p(y|z,W , b) = S(W⊤z + b)y,

where z depends on x and θ (= all model parameters)
▶ To do so, we need to compute all terms exp(⟨wc′ , z⟩+ bc′)
▶ Complexity: O(ZC) per example → expensive when ZC large
▶ Gradient in backprop generally non-zero for all parameters (W & b)

• E.g., word vectors trained on Google News: C = 3M
▶ CBOW with W = 2: Add 4 vectors to obtain hidden representation

z, compute 3M inner products/exponents for softmax output
▶ Common approach: avoid plain softmax

2 / 11

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit


Hierarchical softmax (1)
• Hierarchical softmax layer: arrange classes in a “decision tree”

▶ Input is z (= output of layer before softmax),
▶ Output is p (= probability for each class)
▶ Leaves are classes
▶ Interior vertices are decision points
▶ Each possible choice associated with a probability
▶ Probability of class = product of probabilities of corresponding path

• Example: two alternative trees for C = 16
z

v

c0000 c0001 c0010 c0011 c0100 c0101 c0110 c0111 c1000 c1001 c1010 c1011 c1100 c1101 c1110 c1111

z

v

v0

v00

v000

c0000 c0001

v001

c0010 c0011

v01

v010

c0100 c0101

v011

c0110 c0111

v1

v10

v100

c1000 c1001

v101

c1010 c1011

v11

v110

c1100 c1101

v111

c1110 c1111
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Hierarchical softmax (2)

• To model the probability distribution over the children of each
interior vertex, use softmax
▶ One weight matrix and bias vector per interior node
▶ Probability distribution over children of vi is S(W⊤

i z + bi)
▶ Note: z is used at each interior node

→ Influences all decisions

• Flat tree → Output is py = S(W⊤z + b)y ≡ softmax
z

v

c0000 c0001 c0010 c0011 c0100 c0101 c0110 c0111 c1000 c1001 c1010 c1011 c1100 c1101 c1110 c1111

W , b

▶ Output py depends on entire W and b
→ C weight vectors and bias terms
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Hierarchical softmax (3)
• Binary trees

▶ Store weight vector and (scalar) bias at each interior node
▶ C classes → C − 1 interior nodes / weight vectors / bias terms
▶ Probability py of, say, leaf y = 0101 is

S(0,w⊤z+b)0·S(0,w⊤
0 z+b0)1·S(0,w⊤

01z+b01)0·S(0,w⊤
010z+b010)1

→ Only depends on 4 (out of 15) weight vectors and bias terms
z

v

v0

v00

v000

c0000 c0001

v001

c0010 c0011

v01

v010

c0100 c0101

v011

c0110 c0111

v1

v10

v100

c1000 c1001

v101

c1010 c1011

v11

v110

c1100 c1101

v111

c1110 c1111

w, b

w0, b0 w1, b1

w00, b00 w01, b01 w10, b10 w11, b11

w000, b000 w001, b001 w010, b010 w011, b011 w100, b100 w101, b101 w110, b110 w111, b111

• Balanced binary trees
▶ In general: C classes → access log2 C weight vectors / bias terms
▶ E.g., for C = 3M → log2 C ≈ 22
▶ Much more efficient to compute
▶ All other weight vectors / biases have zero gradient during backprop5 / 11



Hierarchical softmax (4)

• Choice of tree matters for prediction performance
▶ Hierarchical softmax is able to produce good predictions if the

classes in the “right” subtree are easy to discriminate from the
classes of the “wrong” subtrees (by softmax classifier)

▶ E.g., for words: cluster words and recursively partition them into
two clusters → hierarchical softmax can achieve similar prediciton
performance as regular softmax

▶ E.g., when classes arranged in hierarchy → use directly

• Choice of tree matters for training speed
▶ Flat: as slow as softmax
▶ Balanced: logarithmic cost
▶ Fastest: Huffman tree based on class frequencies

→ Minimize expected path lengths (frequent classes → short path)

• No/limited runtime improvement during prediction
▶ Still need to compute all probabilities to get distribution over labels
▶ Largest-probability prediction can often be obtained faster

(e.g., best-first search, beam search, MIPS)

6 / 11

http://papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model.pdf
http://papers.nips.cc/paper/3583-a-scalable-hierarchical-distributed-language-model.pdf
https://en.wikipedia.org/wiki/Best-first_search
https://en.wikipedia.org/wiki/Beam_search
https://en.wikipedia.org/wiki/Maximum_inner-product_search


Sampling-based approximate softmax (1)

• Many other approaches to approximate softmax exist, most
notably, based on sampling

• Fix some z, let ηc = ⟨wc, z⟩+ bc, and pc = S(W⊤z + b)c

• Log-likelihood for a single example (x, y) is

ℓ = log py = logS(W⊤z + b)y = log
exp(ηy)∑
c exp(ηc)

= ηy − log
∑
c

exp(ηc)

where as before, z depends on x and parameters θ

• Gradient is

∇θℓ = ∇θηy −∇θ log
∑
c

exp(ηc) = · · ·

= ∇θηy −
∑
c

pc∇θηc = ∇θηy − Ec∼Cat(p)[∇θηc]
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Sampling-based approximate softmax (2)

• Gradient: ∇θℓ = ∇θηy − Ec∼Cat(p)[∇θηc]
▶ Part 1: ∇θηy → positive reinforcement for current class
▶ Part 2: Ec∼Cat(p)[∇θηc] → (weighted) negative reinforcement

for other classes

• Sampling-based approaches approximate neg. reinforcement term
▶ This would be easy if we could sample from distribution Cat(p),

but computing p is what we try to avoid in the first place
▶ Simple, common heuristic: negative sampling

→ Sample uniformly (instead of using p), no guarantees, but cheap
▶ Many more approaches have been proposed (e.g., adaptive

importance sampling or noise contrastive estimation)

• For more on approximating softmax, see S. Ruder (2016)

• Classification with many classes sometimes called extreme
classification
▶ Important problem in practice
▶ Active research topic

8 / 11

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://ieeexplore.ieee.org/document/4443871
https://ieeexplore.ieee.org/document/4443871
https://www.cs.helsinki.fi/u/ahyvarin/papers/Gutmann10AISTATS.pdf
overview by https://www.ruder.io/word-embeddings-softmax/
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html


Maximum inner product search

• For prediction, may only care about most-likely prediction
▶ Most-likely prediction = largest softmax score
▶ Since: log p(y|x) = ηy − log

∑
c exp(ηc) = ηy +C(x), where C(x)

depends on x only (=constant)

• Softmax scores are W⊤z (ignoring bias)
▶ So η1 = w⊤

1 z, η2 = w⊤
2 z, . . . , ηC = w⊤

Cz
▶ Most-likely prediction = wc with largest inner product with z
▶ Note: that’s the prediction at “temperature T = 0” (cf. 04-2)

• Maximum inner product search
▶ Given upfront and indexed: set of vectors W = {w1, . . . ,wC }
▶ Query: another vector z
▶ Output: top-k inner-products (of vectors in W with z)
▶ Slow to do exactly (e.g., our work on LEMP), but many fast

approximate methods exists
▶ Special case of approximate nearest neighbor search
▶ Applications include: “temperature 0” softmax prediction, search in

vector stores

9 / 11

https://www.uni-mannheim.de/media/Einrichtungen/dws/Files_Research/teflioudi16lemp-draft.pdf


Example (glove-100-angular, k = 10)

10 / 11ANN Benchmarks

https://ann-benchmarks.com/
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https://big-ann-benchmarks.com/neurips23.html
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Part embeddings
• So far, we considered monolithic inputs (e.g., real-valued vectors

or categorical inputs)
• From now on: (more) structured input spaces

▶ I.e., inputs that consists of multiple parts
▶ E.g., text documents → words or tokens (sequence)
▶ E.g., images → pixels (grid)
▶ E.g., graphs → vertices, edges (irregular)
▶ E.g., shopping cart → products (set)

• Global embeddings represent the entire input
▶ Useful for input-level tasks

• Part embeddings represent individual parts
▶ Useful for part-level tasks
▶ Also used to obtain global embeddings

(recall: compositional embeddings from 04-1)

• General approach (forward pass)
1. Obtain part embeddings and/or global embedding
2. Add prediction head (or other downstream network) on top to

obtain final output 2 / 13



Example: Part-of-speech tagging (part-level task)

Part 1 Part 2 Part 3 Part 4 Part 5

Part 1
Embed.

Part 2
Embed.

Part 3
Embed.

Part 4
Embed.

Part 5
Embed.

Deep Learning

Pred.
Head

Pred.
Head

Pred.
Head

Pred.
Head

Pred.
Head

The dog ate the cake

DT NN VBD DT NN
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Example: Sentiment classification (input-level task)

Part 1 Part 2 Part 3 Part 4 Part 5

Deep Learning

Global
Embedding

Pred.
Head

The dog ate the cake

Negative!
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Example: GNNs (input-level task)

Molecular property prediction

5 / 13Sanchez-Lengeling et al., 2019

https://arxiv.org/abs/1910.10685


Key operations
• Input represented in terms of

▶ Global features (if any)
▶ Parts and relationship between parts (e.g., order in a sequence or

edges in a graph)
▶ Part features (= initial part embeddings)

• Three key operations
1. Contextualization: incorporate information from other parts into

each part embedding
2. Local compute: update each part embedding individually
3. Pooling: aggregate multiple (or all) part embeddings

• We will see: many architectures follow this high-level pattern
• Each operation can be fixed a priori or be learned from data

▶ Different architectures differ in how this is done
▶ Operations may occur multiple times and in different orders
▶ Sometimes: multiple operations merged into one
▶ Sometimes: other operations (e.g., drop parts)
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0. Input representation
• I recently biked from Mannheim to Weißer Stein and back

▶ Task: How many meters did I climb? (input-level)
▶ Let’s solve this task using the three key operations

• We start with in input representation
▶ Here is the altitude profile

0 20 40 60 80 100 120 140 160
0

200

400

▶ Parts = measurements at 1 minute intervals (ca. 150 parts)
▶ Initial part representation: altitude at that time
▶ Relationship: sequence (ordered)
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1. Contextualization
• Contextualization: incorporate information from other parts

into each part embedding
▶ Input: part embeddings
▶ Output: contextualized part embeddings
▶ Updated representation of each part depends on some/all other parts
▶ Examples: convolution, recurrence, self-attention

• For our example, let’s compute the increment/decrement in
altitude w.r.t. the previous timestep

0 20 40 60 80 100 120 140 160

50

0

▶ We will see: that’s a “convolution” operation
▶ Observe that relationship between parts (here: order) matters
▶ Contextualized parts now represent altitude changes
▶ Each part representation depends on other parts

→ contextualization 8 / 13



2. Local compute
• Local compute: update each part embedding individually

1. Applied individually to each part
2. Input: one part embedding
3. Output: updated part embedding
4. Updated representation of each part depends only on its own

representation
5. Example: MLP

• Let’s zero out the downhill parts

0 20 40 60 80 100 120 140 160
0

10

▶ That’s a part-wise ReLU operation
▶ Relationship between and values of other parts ignored
▶ Updated parts now represent altitude increments
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3. Pooling
• Pooling: aggregate multiple (or all) part embeddings

▶ Input: multiple part embeddings
▶ Output: aggregated embedding
▶ Examples: mean pooling, sum pooling, max pooling, attention

• Special case: readout = pool all part embeddings to obtain
global embedding

• Let’s sum up the altitude increments
▶ Result: 503.4m
▶ That’s a sum-pooling operation
▶ It’s also a readout: all “embeddings” are pooled together
▶ In this case, no prediction head required
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Template models, parameters sharing
• We’ve obtained the final result by

▶ Starting with part embeddings
▶ Contexualizing and updating the part embeddings
▶ A final readout operation to obtain a global representation

• Instance of a template model
▶ I.e., a set of rules used to construct a neural network
▶ E.g., “compute the difference to the previous part”

(contextualization)
▶ E.g., “zero out negative values” (local compute)
▶ The same template would also work for other inputs and with

different numbers of parts (e.g., shorter or longer rides)

• We used parameter sharing
▶ Each individual operation was the same for all parts
▶ But with different inputs
▶ When we use parameterized (learned) functions, we share the

parameters across parts

• Both template modeling and parameter sharing are used by many
DL architectures → coming up
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Recall: CBOW
Task: predict current word wt given its 2W surrounding words
(= context).

Local compute Pooling Prediction head
(embedding layer) (sum) (softmax layer)

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

       INPUT         PROJECTION         OUTPUT

w(t)

          INPUT         PROJECTION      OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

                   CBOW                                                   Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R × 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)−vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5
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Preview: Parallel processing and cost
• Local compute

▶ (Embarrassingly) easy to parallelize → process parts independently

• Contextualization
▶ Sometimes sequential computation needed (n parts → n steps)

→ Limited parallelizability (e.g., non-linear RNNs)
▶ Sometimes compute-heavy (n parts → n2 pairwise influences)

→ Easy to parallelize, limited scalability (e.g., Transformer encoder)
▶ Sometimes intermediate (each part influenced by only some parts)

→ Still parallelizable, better scalability (e.g., CNNs, GNNs)

• Pooling
▶ Depends
▶ Sometimes comparably cheap (e.g., readout, done once)
▶ Sometimes part of contextualization (e.g., attention in

Transformers, done many times)
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Grid data
• Convolutional neural networks (CNN) are a family of neural

networks for processing grid data
▶ 1D grid → sequential data (e.g., time series, text, audio, . . .)
▶ 2D grids (images)
▶ 3D grids (movies, CT scans)
▶ Data in such a grid layout referred to as volume

• Grid data means: neighboring points related
▶ Roughly: random permutation along each grid dimension leads to

loss of information
▶ E.g., in time series: neighboring points are temporally close
▶ E.g., in images: neighboring points are spatially close
▶ E.g., in videos: neighboring points are spatially/temporally close
▶ E.g., not in user-product sales matrix: row and column ordering

arbitrary
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Grid, volume, parts (1D)
• Part-based view of grid data (cf. lecture 05)

▶ Grid points correspond to parts (later also: grid regions)
▶ Features correspond to part representations/embeddings
▶ Parts and their representations represented in a volume

• Example: 1D grid, 1 feature (e.g, time series)

0 20 40 60 80 100 120 140 160
0

200

400

▶ 1 grid dimension (time), 1 feature (altitude)
▶ Grid points correspond to parts (minute intervals; ca. 150)
▶ Features correspond to part representation (1 per part)
▶ Both together form a 150× 1 volume

• Example: 1D grid, 3 features (e.g., multivariate time series)
▶ Suppose we had three features (altitude, latitude, longitude)
▶ Then each part represented by 3 values → 150× 3 volume
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Grid, volume, parts (2D)
• Example: 2D grid, 3 features (e.g., images)

▶ 2 grid dimensions (width, height), 3 features (red, green, blue)
▶ Grid points correspond to parts (pixels; 8× 8 = 64 in total)
▶ Features correspond to part representation (3 per part)
▶ All together form an 8× 8× 3 volume

• Discussion
▶ Neighborhood relationship on grid dimensions (parts)
▶ But not on feature dimension (convention: last dimension)
▶ A feature’s values for all parts = feature map or channel

(here: 3, each 8× 8)
▶ Initial part representations are input
▶ (One) goal of CNNs: better (contextualized) part representations
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CNNs at a glance (1)
• Key ingredients

▶ Part-based modeling (cf. lecture 05)
▶ Template modeling
▶ Parameter sharing (across parts / grid dimensions)

• Main application areas include
▶ Computer vision: e.g., object recognition and classification

(characters, persons, traffic signs, ...)
▶ Natural language processing: e.g., character-level modeling
▶ Signal processing (e.g., audio, time series, . . . )

• Example tasks
▶ Part-based tasks (e.g., image segmentation, anomaly detection)
▶ Global tasks (e.g., image classification)
▶ Also: intermediates (e.g., object detection, forecasting)
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CNNs at a glance (2)
• Recall: Three key operations of part-based models (cf. lecture 05)

1. Contextualization: incorporate information from other parts into
each part embedding

2. Local compute: update each part embedding individually
3. Pooling: aggregate multiple (or all) part embeddings

• Contextualization operation: convolution
▶ Computes contextualized part embeddings
▶ Technically: CNN is an FNN with at least one layer that performs a

convolution operation (instead of matrix multiplication)

• Local compute: typically one of
▶ Just an activation function (traditional CNNs)
▶ Feature pooling / MLP / 1× 1 convolution (modern CNNs)

• Pooling operation
▶ Reduce number of parts: drop parts (“stride”), spatial pooling
▶ Readout: MLP
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Example CNN

1 5 10 4 6 8

1 4 5 −6 2 2

1 4 5 0 2 2

5 5 4

Contextualization (using convolution with k =
(
−1 1 0

)
)

Local compute (using ReLU)

Pooling (using spatial sum pooling)

Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 8 / 56



Why not use MLPs?
Drawbacks of MLPs for grid data:
1. Too many parameters

▶ E.g., consider a 1000× 1000× 3 grid
▶ MLP has 3M parameters per output neuron (!)

2. Locality (i.e., neighborhood relationships) not exploited
▶ MLP unaware of grid structure of the data
▶ In fact: training MLP on (consistently) permuted data → same

result
3. No translation invariance

▶ Translation invariance: translation of input does not affect output
▶ E.g., in image classification: translated object → same class
▶ MLP must individually learn to recognize a given object at different

positions
4. Cannot handle inputs of varying sizes

▶ CNNs (sometimes) can do this

We will see: Inductive bias of CNNs
helps to mitigate these points.
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Background: Convolution
• A convolution is defined as

y(t) = (x ∗ κ)(t) =
∫ +∞

−∞
x(τ)κ(t− τ) dτ

• Involved functions
▶ Input signal x : R → R (e.g., time → feature)
▶ Kernel (filter) κ : R → R (e.g., age → weight)
▶ Output signal y (e.g., time → contextualized feature)
▶ Note: ∗ is commutative; first/second argument by convention

• Interpretation for a temporal signal (t and τ are “times”)
▶ t is time in output signal (e.g., 20)
▶ τ is time in input signal (e.g., 15)
▶ t− τ is (signed) age of input at output (e.g., 5)
▶ κ(t− τ) is weight of time-τ input at time-t output

→ Depends only on age of input

• For each t, computes a “weighted sum” of all inputs x, where the
weight of x(τ) depends its age a = t− τ via κ(a)
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Discrete convolution
• A discrete convolution is defined as

y(t) = (x ∗ κ)(t) =
+∞∑

τ=−∞
x(τ)κ(t− τ)

• Involved functions
▶ Input signal x : Q → R (e.g., position → feature)
▶ Kernel (filter) κ : Q → R (e.g., age → weight)
▶ Output signal y (e.g., position → contextualized feature)
▶ Note: ∗ is commutative; first/second argument by convention

• Interpretation for a temporal signal (t and τ are “positions”)
▶ t is position in output signal (e.g., 20)
▶ τ is position in input signal (e.g., 15)
▶ t− τ is (signed) age of input at output (e.g., 5)
▶ κ(t− τ) is weight of position-τ input at position-t output

→ Depends only on age of input

• For each t, computes a weighted sum of all inputs x, where the
weight of x(τ) depends its age a = t− τ via κ(a)
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Discrete convolution example (1)
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Discrete convolution example (2)
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Discrete convolution example (3)
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Discrete cross-correlation
• Another interpretation

▶ Flip the kernel
▶ Slide the flipped kernel over the input signal
▶ Take point-wise products and integrate

• Related: discrete cross-correlation

y(t) = (x ⋆ κ)(t) =

∞∑
τ=−∞

x(τ)κ(τ − t)

▶ Observe: κ(τ − t) = κ(−(t− τ)) = κ(−age)
▶ Interpretation as above, but

without kernel flipping
▶ Not commutative anymore

• That’s used in CNNs; called convolution
without kernel flipping or simply convolution

• In CNNs, κ is learned → no conceptual difference
16 / 56
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Convolution and cross-correlation
Convolution

x

w

x∗w

w∗x

Cross-correlation
x

w

x⋆w

w⋆x
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Discrete cross-correlation (1)
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Discrete cross-correlation (2)
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Discrete cross-correlation (3)
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Discrete convolution after flipping kernel
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Vector representation
• Let’s rewrite discrete cross-correlation

y(t) = (x ⋆ κ)(t) =

∞∑
τ=−∞

x(t+ τ)κ(τ)

• In ML, input x, kernel κ, and output y often represented by
vectors x, k, and y, resp.
▶ E.g., x =

(
10 20 15

)⊤
▶ Corresponding function: x(1) = 10, x(2) = 20, x(3) = 15

• Different boundary conditions are possible → padding
▶ E.g., what is x(t) for t /∈ { 1, 2, 3 }?
▶ Zero padding → all 0
▶ Reflection padding: mirror data at the boundaries

(e.g., x(4) = 15, x(5) = 20, x(6) = 10)

• Useful: Interpret kernel as centered and zero-padded
▶ E.g., k =

(
10 20 15

)
▶ Corresponding function: κ(−1) = 10, κ(0) = 20, κ(1) = 15
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Discrete cross-correlation, vector form
• Let’s suppose k has kernel size K = 2W + 1

▶ κ(τ) = 0 for τ < −W and τ > W

• Discrete cross-correlation then becomes

y(t) = (x ⋆ κ)(t) =

W∑
τ=−W

x(t+ τ)κ(τ)

▶ Now a finite sum → easy to compute

• Example: k =
(
1 0 −1

)
of size K = 3 (W = 1)

Input x 0 1 2 4 8 4 2 1 0
Output y -2 -3 -6 0 6 3 2

• As discussed: Output obtained by sliding the kernel over the
input, taking element-wise products, and summing up
▶ E.g., for output y2 = −3

Input x 0 1 2 4 8 4 2 1 0
Kernel k 1 0 -1
Output y -2 -3 -6 0 6 3 2

▶ Observe: only a region of size K = 3 from input accessed 24 / 56



Discrete cross-correlation, tensor form
• For higher-dimensional grids, inputs, kernels, and outputs are

multivariate functions
▶ E.g., for a 2D grid

y(t1, t2) =

W1∑
τ1=−W1

W2∑
τ2=−W2

x(t1 + τ1, t2 + τ2)κ(τ1, τ2)

▶ Kernel size is now K1 ×K2 = (2W1 + 1)× (2W2 + 1)
→ kernel matrix

▶ We now slide this matrix over the input, take element-wise products,
and sum up

▶ The corresponding operation is called a K1 ×K2 convolution
• For a grid of D dimensions, kernel tensor also has D grid

dimensions
▶ Likewise, input tensor and output tensor

25 / 56



MLP vs. convolution layer at a glance

26 / 56Weiler (2023)
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Example: 3× 3 convolutions

Identity

0 0 0
0 1 0
0 0 0



Box blur 1
9

1 1 1
1 1 1
1 1 1



Edge detection

 0 −1 0
−1 4 −1
0 −1 0



Sharpen

 0 −1 0
−1 5 −1
0 −1 0
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Convolutions as FNNs
• We can represent a convolution as a linear FNN

k =
(
1 0 −1

)
1 2 4 8 4 2 1

-2 -3 -6 0 6 3 2

• Weights (=kernel matrix) shared across all neurons
→ parameter sharing

• Kernel moved systematically over data
→ template model

• Kernel touches few inputs
→ sparsity

• Inputs are spatially close
→ locality 28 / 56



Convolutional layers
• CNNs are composed of convolutional layers + nonlinearity

▶ Performs multiple convolutions, each with a different kernel
▶ I.e., produces multiple feature maps (also called channels)
▶ Generally: takes in input volume, produces an output volume

• Example: first convolutional layer for an image
▶ Input: image width (32) × image height (32) × RGB colors (3)
▶ Output: image width (32) × image height (32) × feature map (5)
▶ Convolution performed w.r.t. first two dimensions (next slide)
▶ E.g., for 7× 7 convolution: layer parameterized by 5 kernel tensors

K1, . . . ,K5 ∈ R7×7×3
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Convolutional layers (details)
• In general, we have F ≥ 1 input channels

▶ Use a different kernel for each feature map and sum up
(observe: no “sliding” across feature dimension)

▶ E.g., for a 2D grid

y(t1, t2) =

F∑
f=1

W1∑
τ1=−W1

W2∑
τ2=−W2

x(t1 + τ1, t2 + τ2)κf (τ1, τ2)

• Entire operation be represented by a kernel tensor
▶ E.g., 7× 7 convolution with F = 3 features
▶ 3 kernel matrices, one per feature: K1,. . . ,K3 ∈ R7×7

▶ Or 1 kernel tensor: K ∈ R7×7×3

• For O ≥ 1 output channels, repeat O times with different
convolutions
▶ E.g., 5 output channels
▶ Use 5 kernel tensors K1, . . .,K5 ∈ R7×7×3

▶ Or one of shape R7×7×3×5

• This is the operation of convolutional layers in CNNs
▶ Here: 7 · 7 · 3 · 5 = 735 parameters
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Discussion
• In convolutional layer, the kernel values are parameters

→ learned
• We can think of the kernel as feature detector

▶ Feature = inner product of input and kernel
(vectorized and shifted appropriately)

▶ Kernel is learned → learned feature detector
▶ May use our standard interpretations of inner product
▶ E.g., interpret feature as: Is the input similar to the kernel?

• In part-based view, convolution corresponds to contextualization
▶ Input: part embeddings
▶ Output: contextualized part embeddings via convolutional layer
▶ Observe: contextualized part embeddings depends on nearby part

embeddings only (within kernel size)
▶ Observe: contextualized part embeddings represent nearby grid

points as well

• In CNNs, convolutions are followed by a nonlinearity (e.g., ReLU)
▶ Often part of convolutional layers
▶ In our part-based model, corresponds to local compute
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Translation equivariance
The convolution operation is translation equivariant.
• Means: translated input → translated output

32 / 56Weiler (2023)
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Inductive bias: stationarity
• (One) inductive bias of convolution → stationary data

▶ Means: distribution of values in a particular region is independent
of where the region is located along the grid

• That’s reflected in the feature detector of a convolutional layer
▶ Due to the translation equivariance property, feature detection is

also independent of location
▶ I.e., we detect features independent of where they are

• E.g., in object detection, we want to detect an object irrespective
of its absolute position
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Local compute in CNNs
Local compute operations usually done as follows:
1. Use a non-linearity (as discussed)
2. Use a linear layer

▶ Input: D-dimensional part representation pin ∈ RD

▶ Output: updated C-dimensional part representation pout ∈ RC

▶ Via a linear layer (applied to each grid point / part)

pout = W⊤pin,

where W ∈ RD×C is the weight matrix
▶ C < D → decreased embedding size
▶ C > D → increased embedding size
▶ For 2D grids, equivalent to a 1× 1-convolution with weights W

(used as kernel)
▶ Often: term 1× 1-convolution used for grids of other dimensionality

as well (instead of, say, 1× 1× 1 convolution for a 3D grid)

3. Perform feature pooling (more later)
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*Depth-wise separable convolution
• Depth-wise separable convolution layers exploit that

translation equivariance is not needed across channels
1. Depth-wise convolution: take in input volume, produce an

intermediate output volume, where each channel of the
intermediate output volume is computed from exactly one channel
of the input volume (H channels in → H channels out)

2. Apply a 1× 1 convolution
• Example from sl. 29: first convolutional layer for an image

▶ Input: image width (32) × image height (32) × RGB colors (3)
▶ Output: image width (32) × image height (32) × feature map (5)
▶ E.g., for d7× 7 convolution: layer parameterized by 3 kernel

matrices K1, . . . ,K3 ∈ R7×7 plus “weight matrix” W ∈ R3×5

▶ This reduces the amount of model parameters significantly
7× 7 → 7 · 7 · 3 · 5 = 735 parameters
d7× 7 → 7 · 7 · 3 + 3 · 5 = 162 parameters

• Used in many recent architectures (e.g. ConvNext; also:
MobileNet, EfficientNet)
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*2D convolution vs. depth-wise convolution

2D convolution Depth-wise convolution

For depth-wise separable convolution, add 1× 1 convolution to
depth-wise convolution (not shown here).

37 / 56Pandley (2018)
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Spatial pooling
Convolutional layers periodically followed by pooling operations.
1. Drop parts

▶ E.g., in 1D grid, keep only every k-th part (and drop others)
▶ Corresponds to a convolution operation with stride k

(equivalent, but more efficient)
▶ Stride = steps in which to slide kernel

(set separately for each grid dimension)

2. Use pooling layers (next slide)

Both operations decrease spatial resolution.
• I.e., grid size reduced

• E.g., 32× 32, then conv. layer with stride 2× 2 → 16× 16

• Resulting parts then represent regions
(here: 2× 2 regions)
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Pooling layers
• Pooling layers

▶ Like a convolution, but hard-coded, possibly non-linear operation
(e.g., max pooling, avg pooling)

▶ Groups together (“pools”) the values in a region
▶ Reduces size: e.g., stride = no. pooled values (per dimension)
▶ Sometimes referred to as subsampling

• Can be performed along spatial dimension and/or feature
dimensions

• Example: spatial max-pooling
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Invariance
• Translation invariance

▶ Means: translated input → same output
▶ Desired in tasks such as image classification
▶ E.g., whether or not an image contains a flower (=class) does not

depend on the location of the flower

• Spatial pooling operations increase translation invariance
(slightly) → inductive bias

• Likewise, feature pooling increases feature invariance
41 / 56
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Example 1: LeNet5

• LeNet5 is a well-known early architecture (1998)

• Used for digit/letter classification

• (Scaled) tanh units almost everywhere

• Subsampling = 2× 2 average pooling with stride 2

• Output computes distance to manually-crafted image (one per
class) → radial basis function (RBF)
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http://yann.lecun.com/exdb/lenet/


Receptive fields
• Each feature in a CNN has a receptive field

▶ I.e., the set of inputs that influence this feature
▶ Increases via convolution or pooling operations
▶ Thus: higher-level layers have larger receptive field and tend to

provide higher-level features (e.g., edges, then parts, then objects)
▶ Important design consideration: e.g., to detect an object of a

certain size, want receptive field of that size

• Example: receptive field after two convolutions of width 3

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit,s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width , only three inputs affect3 s3. When(Bottom) s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure ) or pooling9.12
(section ). This means that even though9.3 direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.
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• Effective receptive field often smaller and focused on center
region
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https://arxiv.org/pdf/1701.04128.pdf


Example 2: AlexNet by Krizhevsky et al. (NeurIPS, 2012)
• AlexNet is the "first recent" architecture (2012)

▶ Some history (ZDNET)
• Used for image classification, but adapted to many tasks (e.g.

object detection)

• ReLU activations
• Subsampling using max pooling
• Prediction using softmax layer, trained via cross entropy loss
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https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://www.zdnet.com/article/alexnet-the-ai-model-that-started-it-all-released-in-source-code-form-for-all-to-download/


What is learned in AlexNet? (1)

Layer 1, initialization (100 iterations)
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What is learned in AlexNet? (2)

Layer 1, 1000 iterations
47 / 56



What is learned in AlexNet? (3)

Composition of features? Low-level features, parts, objects, ...?
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Example: Outputs of a CNN

Web demo
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http://cs231n.stanford.edu/


Example features: edges, parts, objects (1)





Visualizing and Understanding Convolutional Networks

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.
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https://arxiv.org/abs/1311.2901


Example features: edges, parts, objects (2)



Visualizing and Understanding Convolutional Networks

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.
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https://arxiv.org/abs/1311.2901


Example features: edges, parts, objects (3)

52 / 56Zeiler and Fergus, 2013

https://arxiv.org/abs/1311.2901


CNNs for image classification (1)

Revolution	of	Depth

3.57

6.7 7.3

11.7

16.4

25.8
28.2

ILSVRC'15	
ResNet

ILSVRC'14	
GoogleNet

ILSVRC'14
VGG

ILSVRC'13 ILSVRC'12	
AlexNet

ILSVRC'11 ILSVRC'10

ImageNet	Classification	top-5	error	(%)

shallow8	layers

19	layers22	layers

152	layers

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

8	layers
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http://kaiminghe.com/cvpr16resnet/cvpr2016_deep_residual_learning_kaiminghe.pdf


CNNs for image classification (2)
• Increase in depth possible due to suitable architectures

▶ Avoid that adding depth leads to vanishing/exploding gradients or
makes learning harder (e.g., residual units)

▶ Avoid too-strong increase in memory consumption (e.g., separable
convolutions and small filters)

• Not just depth, but also resolution and width important

• Data augmentation (e.g., crop, rotate, flip, . . . ) important
• Pretraining—e.g., on ImageNet—to handle lack of training data

for particular task
▶ Pretrained models available; e.g., GluonCV

• Much more in CS 646 Computer Vision (HWS)
▶ E.g., in-depth discussion of architectures, tasks other than image

classification, and training CNNs in computer vision
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https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/abs/1712.04621
http://www.image-net.org/
https://gluon-cv.mxnet.io/model_zoo/index.html


Example: Microsoft’s ResNet
Example architectures for ImageNet’s image classification task
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• ResNet (scaled to various depths) and some follow up models
(ResNeXt, DenseNet) have defined the SotA for several years.
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SotA in image classification
• Many Transformer-based methods have been proposed

(more later)
• ConvNeXt and other recent CNNs keep up

▶ Distant relationships modeled in deep layers
▶ Translation equivariance, but larger filters

(possible through depthwise separable conv.)
▶ Benefits with reasonable amounts of training data
▶ Borrows ideas from Transformer architecture
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Sequential data

• Sequence models operate on sequential data
• Sequential data = data with meaningful order

▶ Time series data (e.g., sequences of sensor readings)
▶ Natural language text (e.g., sequences of characters / tokens)
▶ Audio signals (e.g., sequences of amplitudes)
▶ Images (e.g., sequences of pixels/rows/columns)
▶ Videos (e.g., sequences of frames)
▶ Processes (e.g., sequences of actions)
▶ . . .

• Data that is not naturally sequential is sometimes “sequentialized”
▶ E.g., a set as a sequence of its elements
▶ E.g., a graph as a sequence of its vertices and edges
▶ Beware: sequence models are generally not order-invariant
→ At the very least, careful sequentialization required
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Sequential data and part-based models
• Part-based view of sequential data (cf. lecture 05)

▶ time steps (≈ positions) correspond to parts
▶ Features correspond to part representations/embeddings
▶ Parts and their representations represented in a sequence

• Example: 1 feature (e.g., time series)

0 20 40 60 80 100 120 140 160
0

200

400

▶ Time dimension, 1 feature (altitude)
▶ time steps correspond to parts (minute intervals; ca. 150)
▶ Features correspond to part representation (1 per part)
▶ Both together form a real-number sequence of length 150

• Example: 3 features (e.g., multivariate time series)
▶ Suppose we had three features (altitude, latitude, longitude)
▶ Then each part represented by 3 values → seq. of 150 vectors ∈ R3
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Sequential data, formally
• Inputs sequence x ∈ X ∗

▶ A sequence x(1),x(2), . . . ,x(τ) of length τ
▶ x(t) ∈ X is input at time step t ∈ N+

▶ Length τ may differ for different inputs

• Output sequence y ∈ Y∗

▶ A sequence y(1),y(2), . . . ,y(τout) of elements from Y
▶ τout may or may not depend on input x
▶ τout may be deterministic or random (for fixed input)

• Examples from NLP domain, where x is a text document
τout independent of x dependent on x

deterministic Text classification POS tagging
random Language modeling Translation

• Examples from time series domain, where x is a time series
τout independent of x dependent on x

deterministic TS classification Anomaly detection
random Sequence modeling Forecasting
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Types of sequence models
• Encoder-only models compute useful representations/embeddings

▶ E.g., BERT for text data

x ∈ X ∗ Encoder
Prediction

head
y ∈ Yz

• Encoder-decoder models add a decoder to generate sequences
▶ E.g., T5 for sequence-to-sequence models

x ∈ X ∗ Encoder Decoder y ∈ Y∗z

• Decoder-only models drop the encoder (and use decoder instead)
▶ E.g., GPT-1/2/3/4 for language modelling

x ∈ X ∗ Decoder y ∈ X ∗

• Key approaches: CNNs (cf. 06), RNNs (now), Transformers (cf. 08)
6 / 67
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RNNs at a glance (1)
• Recurrent neural networks (RNN) are a family of neural

networks for processing sequential data
▶ Also applicable to other data modalities (e.g., grid data)
→ Not discussed here

• Key ingredients
▶ Part-based modeling (cf. lecture 05)
▶ Template modeling
▶ Parameter sharing (across time steps)

• Example tasks
▶ Part-based tasks (e.g., POS tagging, anomaly detection)
▶ Global tasks (e.g., sequence classification)
▶ Also: intermediates (e.g., forecasting)

• Simple & relevant (e.g., SOTA for long sequence modelling)
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RNNs at a glance (2)
• Recall: Three key operations of part-based models (cf. lecture 05)

1. Contextualization: incorporate information from other parts into
each part embedding

2. Local compute: update each part embedding individually
3. Pooling: aggregate multiple (or all) part embeddings

• Contextualization operation: recurrence
▶ Computes contextualized part embeddings
▶ Does this by passing information “sideways” between parts via a

recurrence

• Local compute: typically one of
▶ Just an activation function (rare; often part of contextualization)
▶ Rescaling (common; often part of contextualization)
▶ MLP (modern RNNs; often separate)

• Pooling operation
▶ Pooling rare, except readout
▶ Readout: certain part embeddings (first/last part)
▶ Readout: pooling (e.g., sum pooling)
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Example RNN

1 5 10 4 6 8

↑ 1, → 1 ↑ 4, → 5 ↑ 5, → 10 ↑ −6, → 4 ↑ 2, → 6 ↑ 2, → 8

1 4 5 0 2 2

14

0

Contextualization (using recurrence
(
yt
zt

)
=

(
1 −1
1 0

)(
xt
zt−1

)
)

Local compute (using ReLU)

Readout (using sum pooling)

Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 10 / 67



Example task: Sequence labeling

• In sequence labeling tasks, we assign a label to each input
(τout = τ)

• Example: part-of-speech tagging
t 1 2 3 4 5
y DT NN VBD DT NN

| | | | |
x The dog ate the cake

• How to solve this task with neural networks?
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Fully-connected FNN (1)

x

z

y

The dog ate the cake

DT NN VBD DT NN

How to read this architecture
• Each vertex corresponds to a subnetwork
• Each edge indicates directed connections between corresponding

subnetworks
▶ Between output neurons and input neurons
▶ Not necessarily fully connected

• Other architecture details abstracted away
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Fully-connected FNN (2)

x

z

y

The dog ate the cake

DT NN VBD DT NN

• For example,
▶ Input vertex x(t) corresponds to D = 200-dimensional embedding

layer (= subnetwork)
▶ Hidden vertex z(t) corresponds to Z = 50 sigmoid units

(subnetwork = 50 units, no connections in between)
▶ Output vectex y(t) corresponds to C = 36-dimensional softmax

layer (= subnetwork)
▶ Fully connected: when A→ B, then connection from each unit

a ∈ A to each unit b ∈ B
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Why not use an MLP?
• Sequence length τnet hard-coded

▶ Cannot handle input sequences of length τ > τnet directly
▶ Shorter sequences can be supported (at least in principle) by

padding with a special “empty” input to length τ

• Many parameters; e.g., for our example
▶ Input embedding layers: τnetV D parameters (e.g., 5 · 100k · 200 = 100M)
▶ Hidden layers: τnetDZ (e.g., 5 · 200 · 50 = 50k)
▶ Output layers: τnetZC (e.g., 5 · 50 · 36 = 9k)

• No information sharing between time steps
▶ Network needs to learn that “the” is likely to be a determiner for

each time step separately

• For probabilistic models: outputs cond. independent given z
▶ Cannot express, for example, that two outputs must agree

(e.g., 00 with 50% probability, 11 with 50% probability)

• RNNs can address all of these problems
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A simple RNN

RNN Unfolded RNN

x(t)

z(t)

y(t)

W 1, b1

W 2, b2

x

z

y

The dog ate the cake

DT NN VBD DT NN

W 1, b1 W 1, b1 W 1, b1 W 1, b1 W 1, b1

W 2, b2 W 2, b2 W 2, b2 W 2, b2 W 2, b2

• RNNs are template models
▶ Network is constructed by repeating the same template for every

time step → called unfolding
▶ Parameters are shared across time steps

• Template is important architecture decision; e.g., here:
▶ Outputs only depend on their corresponding word
→ context ignored
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Unidirectional RNN

RNN Unfolded RNN

x(t)

z(t−1) z(t)

y(t)

W 1, b1

W 2, b2
W 3,

b3

x

z

y

The dog ate the cake

DT NN VBD DT NN

• Templates usually include connections between time steps
• In a unidirectional RNN, connections between time steps go

from left to right
▶ Network can pass along information to subsequent time steps
▶ z(t)’s commonly referred to as hidden states

• For example, at t = 2
▶ z(2) computed from input x(2) (“dog”)
▶ And from hidden representation z(1)
▶ Useful information to pass along via z(1), for example: “word at

time step 1 was likely to be a determiner”
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Discussion (1)
• Network is recurrent

▶ E.g., a recurrence of form z(t) ← f(xt, zt−1,yt−1)
xt is input connection
zt−1 is hidden-to-hidden connection
yt−1 is output-to-hidden connection

▶ Can be done “infinitely” often
▶ May also access xt−k, zt−k and/or yt−k for k > 0

• Unfolded network is deep in time
▶ Even when template is shallow

• Hidden state representation serves two purposes
1. Prediction: provide good features to output layer

(at current time step)
2. Memory: provide useful information to subsequent time step(s)

(e.g., previous word was likely a determiner)

• Suitable representations not prespecified, but learned
• “Multi-purpose” representations are common

▶ E.g., z in hierarchical softmax served multiple purposes: determines
probability distribution at each vertex in decision tree
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Discussion (2)
• When only hidden-to-hidden connections used: outputs cond.

independent given hidden layer
▶ Fixed by adding output-to-hidden/output connections (more later)

• Parameter sharing → inductive bias: position independence
▶ Same operation but different “data” at each position
▶ Selection of useful input features does not depend on position
▶ Selection of useful information to pass along does not depend on pos.

• RNNs are universal (can simulate any Turing machine)
• Can be slow as computation cannot be parallelized over time

▶ Since operation at time step t needs input from time step t− 1

• Advantage: for inference, unrolling not necessary
▶ Process time steps incrementally
▶ Only keep information from previous time step

• Advantage: real-time prediction possible (e.g., for data streams)
▶ Can output y(t) as soon as we see x(t)

• Disadvantage: data in subsequent time steps ignored
(e.g., for NER: “Green Mile is a movie.” vs. “Green is a color.”) 18 / 67
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Bidirectional RNN

RNN Unfolded RNN

x(t)

z(t)

s(t)

z(t−1)

s(t+1)

y(t)

The dog ate the cake

DT NN VBD DT NN

• Bidirectional RNNs also have backwards connections
▶ Information about “past” and “future” captured in hidden units
▶ Every output depends on every input → better predictions

• Main drawbacks
▶ No real-time predictions
▶ More resource-intensive during prediction
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RNNs and vanishing gradients (1)
CHAPTER 4. LONG SHORT-TERM MEMORY 32

Figure 4.1: The vanishing gradient problem for RNNs. The shading of
the nodes in the unfolded network indicates their sensitivity to the inputs at
time one (the darker the shade, the greater the sensitivity). The sensitivity
decays over time as new inputs overwrite the activations of the hidden layer,
and the network ‘forgets’ the first inputs.

Figure 4.2 provides an illustration of an LSTM memory block with a single
cell. An LSTM network is the same as a standard RNN, except that the sum-
mation units in the hidden layer are replaced by memory blocks, as illustrated
in Fig. 4.3. LSTM blocks can also be mixed with ordinary summation units,
although this is typically not necessary. The same output layers can be used for
LSTM networks as for standard RNNs.

The multiplicative gates allow LSTM memory cells to store and access in-
formation over long periods of time, thereby mitigating the vanishing gradient
problem. For example, as long as the input gate remains closed (i.e. has an
activation near 0), the activation of the cell will not be overwritten by the new
inputs arriving in the network, and can therefore be made available to the net
much later in the sequence, by opening the output gate. The preservation over
time of gradient information by LSTM is illustrated in Figure 4.4.

Over the past decade, LSTM has proved successful at a range of synthetic
tasks requiring long range memory, including learning context free languages
(Gers and Schmidhuber, 2001), recalling high precision real numbers over ex-
tended noisy sequences (Hochreiter and Schmidhuber, 1997) and various tasks
requiring precise timing and counting (Gers et al., 2002). In particular, it has
solved several artificial problems that remain impossible with any other RNN
architecture.

Additionally, LSTM has been applied to various real-world problems, such
as protein secondary structure prediction (Hochreiter et al., 2007; Chen and
Chaudhari, 2005), music generation (Eck and Schmidhuber, 2002), reinforce-
ment learning (Bakker, 2002), speech recognition (Graves and Schmidhuber,
2005b; Graves et al., 2006) and handwriting recognition (Liwicki et al., 2007;
Graves et al., 2008). As would be expected, its advantages are most pronounced
for problems requiring the use of long range contextual information.

21 / 67Graves, 2014
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RNNs and vanishing gradients (2)
• Recall vanishing gradient problem

▶ Gradient decreases quickly with distance from output

• RNNs are deep in time, thus translates to:
▶ Gradient of past input x(tpast) w.r.t. to current output y(t) quickly

decreases over time (t− tpast)
▶ I.e., network becomes insensitive to changes in past input
▶ I.e., it “forgets” past input = catastrophic forgetting

• Why is this a problem?
▶ Intuitively: network has difficulties when predictions depend on

inputs seen in the far past

• Two common approaches
▶ Use gating mechanisms in hidden layers to mitigate this effect

(e.g., LSTM, GRU)
▶ Let the network directly access past information via attention

(cf. lecture 08)
▶ Also: do both
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Why not use residual connections?

Plain RNN RNN w/ residual connection

x(t)

z(t−1) z(t)

y(t)

x(t)

z(t−1) u(t) +

y(t)

• Simple “solution”: add a residual connection (e.g., as above)
• Not suitable for RNNs

▶ z(t) = z(t−1) + u(t) = z(t−2) + u(t−1) + u(t) = · · · = z(0) +∑t
t′=1 u

(t′)

▶ At time t, u(t) has same “contribution” as u(t−1), u(t−2), . . .
→ Not time-dependent

• Instead, we’d like to
▶ Capture short-range dependencies (more recent → more contribution)
▶ Capture long-range dependencies (far away → large contribution)
▶ Need trade-off → gating mechanisms
▶ How to trade-off? → learned 23 / 67



Gating mechanisms
Key idea: use “gates” to control whether or not new information is
allowed to override hidden state
CHAPTER 4. LONG SHORT-TERM MEMORY 35

Figure 4.4: Preservation of gradient information by LSTM. As in Fig-
ure 4.1 the shading of the nodes indicates their sensitivity to the inputs at time
one; in this case the black nodes are maximally sensitive and the white nodes
are entirely insensitive. The state of the input, forget, and output gates are
displayed below, to the left and above the hidden layer respectively. For sim-
plicity, all gates are either entirely open (‘O’) or closed (‘—’). The memory cell
‘remembers’ the first input as long as the forget gate is open and the input gate
is closed. The sensitivity of the output layer can be switched on and off by the
output gate without affecting the cell.

4.2 Influence of Preprocessing

The above discussion raises an important point about the influence of prepro-
cessing. If we can find a way to transform a task containing long range con-
textual dependencies into one containing only short-range dependencies before
presenting it to a sequence learning algorithm, then architectures such as LSTM
become somewhat redundant. For example, a raw speech signal typically has a
sampling rate of over 40 kHz. Clearly, a great many timesteps would have to
be spanned by a sequence learning algorithm attempting to label or model an
utterance presented in this form. However when the signal is first transformed
into a 100 Hz series of mel-frequency cepstral coefficients, it becomes feasible to
model the data using an algorithm whose contextual range is relatively short,
such as a hidden Markov model.

Nonetheless, if such a transform is difficult or unknown, or if we simply
wish to get a good result without having to design task-specific preprocessing
methods, algorithms capable of handling long time dependencies are essential.

4.3 Gradient Calculation

Like the networks discussed in the last chapter, LSTM is a differentiable function
approximator that is typically trained with gradient descent. Recently, non
gradient-based training methods of LSTM have also been considered (Wierstra
et al., 2005; Schmidhuber et al., 2007), but they are outside the scope of this
book.
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A simple gate

σ(W⊤x+ b)

⊙x

σ

xnew

• Input: x ∈ RD

• Filter σ ∈ [0, 1]D

▶ Computed from x (here: via logistic units)
▶ Think: σk = Percentage of xk to retain
▶ Learned (here: via W , b)

• Output: xnew ∈ RD is “gated” input
▶ Since xnew

k = xk · σk
▶ Gate is “open” when σk = 1 → xnew

k = xk
▶ Gate is “closed” when σk = 0 → xnew

k = 0

• Used in RNNs, but also other architectures
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Long short term memory (LSTM)
LSTMs are a (sub)architecture for the hidden layer of an RNN.

z(t−1)

c(t−1)

z(t)

c(t)

x(t)

z(t)

26 / 67Olah, 2015
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Key ideas
• A D-dimensional LSTM unit (or LSTM cell) has

▶ A cell state c ∈ RD = “memory”
▶ A hidden state z ∈ [−1, 1]D = “output”

• Three gates control how states are updated at each time step
▶ Forget gate controls to what extent cell state is retained
▶ Input gate controls to what extent cell state is updated
▶ Output gate controls outputs

• All gates are controlled by the unit’s states
▶ Again, hidden representations serve multiple purposes

• Carefully designed such that gradient information can flow
backwards
▶ Cell state updated, but not replaced/recomputed
▶ Effective weight of input x(tpast) = product of forget gate

activations f (tpast+1)⊙ · · ·⊙f (t) to output y(t)

▶ Gradient cannot explode, but can be kept high (when f (t) ≈ 1)
▶ More in exercise
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Forget gate
• Forget gate controls to what extent state is kept =
f (t) ∈ [0, 1]D

▶ When f (t)k = 1, gate is open
→ element ck not modified (history kept)

▶ When f (t)k = 0, gate is closed
→ element ck zeroed out (history forgotten)

• Decision made based on input x(t)

and hidden state z(t−1)

▶ f (t) = σ
(
W T

f

(
z(t−1)

x(t)

)
+ bf

)

▶ Weights learned
during training
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Input gate
• Input gate decides to what extent state is updated

▶ Proposed update: c̃(t) ∈ [−1, 1]D
▶ Extent by which to update: i(t) ∈ [0, 1]D

▶ For both: weights learned during training

• Example updates
▶ f

(t)
k = 1, i(t)k = 0 → old value

▶ f
(t)
k = 0, i(t)k = 1 → new value

▶ f
(t)
k = 1, i(t)k = 1 → update value

▶ f
(t)
k = 0, i(t)k = 0 → clear value
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Output gate
• Output gate decides to what to output

▶ Output = filtered version of new cell state = new hidden state
▶ Cell state pushed into [−1, 1] via tanh function
▶ Extent by which to filter: o(t) ∈ [0, 1]D

• Variants (→ exercise)
▶ Peephole connections: gate layers (sigmoids) take cell state as

additional input
▶ Coupled input/forget gates: take i(t) = 1− f (t)

▶ Gated recurrent units (GRU):
additionally combine cell state
and hidden state
(pushes filtering to
obtain hidden state
to next time step)
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Using RNN encoders

• So far, we have focused on RNN encoders
• Provide contextualized representations z(t) for each input x(t)

▶ Contextualized since z(t) depends on surrounding inputs
▶ As discussed: Useful for element-level tasks (e.g., sequence labeling)

• Provide fixed-dimensional sequence representation known as
thought vector
▶ Obtained via a form of readout
▶ For uni-directional RNNs: last state z(τ)
▶ For bi-directional RNNs: additionally first state s(1) in backward

direction
▶ As discussed: useful for sequence-level tasks (e.g., sequence

classification)

• Coming up: RNN decoders
▶ Example of a deep autoregressive model
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Excursion: Deep generative models
• Generative model = distribution p(y) for y ∈ Y

▶ Examples from ML course: beta-binomial model, Naive Bayes,
factor analysis & probabilistic PCA, Gaussian mixture model

• Conditional generative model = conditional distribution p(y|c)
▶ May think of c ∈ C as an input / condition / prompt / context
▶ And of p(y|c) as the corresponding output
▶ In contrast to discriminative models, usually multiple “correct” (and

often structured) outputs

• Deep generative models use deep neural networks to define a
generative model for complex data distributions (e.g., text, audio,
image, graph, . . . )
• Tasks of interest include

1. Train a generative model p(y) from samples of data distribution pD(y)
2. Sample from p(y)
3. Determine the top-k highest-probability outputs
4. Given y, compute density p(y)
5. Sometimes: obtain latent codes z for a given data point y
(each optionally conditioned on c) 33 / 67



Sampling from DGMs (1)
By sampling, we create “new” data. Goals are:
• High quality: samples are part of data distribution

• High diversity: all modes of data distribution captured

• Generalization: samples generalize beyond training data
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19.4. EVALUATING GENERATIVE MODELS

Figure 19.9: Illustration of nearest neighbors in feature space: in the top left we have the query sample
generated using BigGAN, and the rest of the images are its nearest neighbors from the dataset. The nearest
neighbors search is done in the feature space of a pretrained classifier. From Figure 13 of [BDS18]. Used with
kind permission of Andy Brock.

19.4.7 Assessing overfitting

Many of the metrics discussed so far capture the sample quality and diversity, but do not capture
overfitting to the training data. To capture overfitting, often a visual inspection is performed: a set
of samples is generated from the model and for each sample its closest K nearest neighbors in the
feature space of a pretrained classifier are obtained from the dataset. While this approach requires
manually assessing samples, it is a simple way to test whether a model is simply memorizing the data.
We show an example in Figure 19.9: since the model sample in the top left is quite different than its
neighbors from the dataset (remaining images), we can conclude the sample is not simply memorised
from the dataset. Similarly, sample diversity can be measured by approximating the support of the
learned distribution by looking for similar samples in a large sample pool — as in the pigeonhole
principle — but it is expensive and often requires manual human assessment[AZ17].
For likelihood-based models — such as variational autoencoders Chapter 20, autoregressive

models Chapter 21, and normalising flows Chapter 22 — we can assess memorisation by seeing how
much the log-likelihood of a model changes when a sample is included in the model’s training set or
not [BW21].

19.4.8 Human evaluation

One approach to evaluate generative models is to use human evaluation, by presenting samples
from the model along side samples from the data distribution, and ask human raters to compare

Draft of “Probabilistic Machine Learning: Advanced Topics” by Kevin Murphy. April 1, 2022
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Sampling from DGMs (2)

Image generation (GAN, DCGAN, CoupledGAN, ProgressiveGAN, StyleGAN)1
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25.7. APPLICATIONS

Figure 25.15: Increasingly realistic synthetic faces generated by different kinds of GAN, specifically (from
left to right): original GAN [Goo+14], DCGAN [RMC15], CoupledGAN [LT16], ProgressiveGAN [Kar+18],
StyleGAN [KLA19]. Used with kind permission of Ian Goodfellow. An online demo, which randomly generates
face images using StyleGAN, can be found at https: // thispersondoesnotexist. com .

adapation (Section 25.7.6) and art (Section 25.7.7).

25.7.1 GANs for image generation

The most widely studied application area is in image generation. Image generation can take
various forms, of which we cover the translation of one image to another using either paired or
unpaired data sets. There are many other topics related to image GANs that we do not cover,
and a more complete overview can be found in other sources, such as [Goo16] for the theory
and [Bro19] for the practice. A JAX notebook which uses a small pre-trained GAN to generate
some face images can be found at GAN_JAX_CelebA_demo.ipynb. PyTorch libraries for fitting
more advanced GAN models can be found at https://github.com/open-mmlab/mmgeneration and
https://github.com/POSTECH-CVLab/PyTorch-StudioGAN. We show the progression of quality in
sample generation of faces using GANs in Figure 25.15. There is also increasing need to consider the
generation of images with regards to the potential risks they can have when used in other domains,
which involve discussions of synthetic media and deep fakes, and sources for discussion include
[Bru+18; Wit].

25.7.1.1 Conditional image generation

Class-conditional image generation using GANs has become a very fruitful endeavor. BigGAN [BDS18]
carries out class-conditional generation of ImageNet samples across a variety of categories, from dogs
to cats and volcanoes and hamburgers. StyleGAN [KLA19] is able to generate high quality images of
faces at high resolution by learning a conditioning style vector and the ProgressiveGAN architecture
discussed in Section 25.6.4. By learning the conditioning vector they are able to generate samples
which are interpolating between the styles of other samples, for example by preserving coarser style
elements such as pose or face shape from one sample, and smaller scale style elements such as hair
style from another; this provides fine grained control over the style of the generated images.
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21.4. TRANSFORMER DECODERS

PROMPT:

In a shocking finding, scientist discovered a herd of unicorns living in a remote,
previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

RESPONSE:

The scientist named the population, after their distinctive horn, Ovid’s Unicorn.
These four-horned, silver-white unicorns were previously unknown to science.
Now, after almost two centuries, the mystery of what sparked this odd phenomenon
is finally solved. Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz,
and several companions, were exploring the Andes Mountains when they found a small valley,
with no other animals or humans....

Figure 21.4: Sample text generated by GPT-2 in response to an input prompt. From https: // openai. com/
blog/ better-language-models/ .

Transformers are the basis of many popular (conditional) generative models for sequences. We
give some examples below.

21.4.1 Text generation (GPT)

In [Rad+18], OpenAI proposed a model called GPT, which is short for “Generative Pre-training
Transformer”. This is decoder-only transformer model that uses causal (masked) attention. In
[Rad+19], they propose GPT-2, which is a larger version of GPT (1.5 billion parameters, or
6.5GB, for the XL version), trained on a large web corpus (8 million pages, or 40GB). They
also simplify the training objective, and just train it using maximum likelihood. The fluency of
text generated by GPT-2 is quite remarkable; see Figure 21.4 for an example. See also https:
//demo.allennlp.org/next-token-lm, which lets you interact with the (medium sized) model, and
generates the K most likely sequences (computed using beam search) given some input context.
More recently, OpenAI released GPT-3 [Bro+20b], which is an even larger version of GPT-2

(175 billion parameters), trained on even more data (300 billion words), but based on the same
principles. (Training was estimated to take 355 GPU years and cost $4.6M.) Due to the large size
of the data and model, GPT-3 shows even more remarkable abilities to generate novel text. In
particular, the output can be (partially) controlled by just changing the conditioning prompt. This
enables the model to perform tasks that is has never been trained on, just by giving it some examples
in the prompt. This is called “in-context learning”, and is an example of (gradient-free) “few-shot
learning” (see Section 18.5.2). See Figure 21.5 for an example, and https://gpt3demo.com/apps/
openai-gpt-3-playground for an interactive demo.

21.4.2 Music generation

It is possible to modify transformer decoders so that they generate music instead of natural language,
as shown by the music transformer paper [Hua+18a]. The key “trick” is to note that the midi
format for music can be represented as a sequence of parameterized tokens, as shown in Figure 21.6.
To cope with the long sequence length, a relative attention mechanism was devised. See Figure 21.7
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Sampling from DGMs (3)
Conditional generative models can be used for A-to-B problems,
where A,B ∈ { text, speech, image, graph, . . . }.

image-to-image (cGAN)
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Labels to Facade BW to Color

Aerial to Map

Labels to Street Scene

Edges to Photo

input output input

inputinput

input output

output

outputoutput

input output

Day to Night

Figure 25.16: Example results on several image-to-image translation problems as generated by the pix2pix
conditional GAN. From Figure 1 of [Iso+17]. Used with kind permission of Philip Isola.

25.7.1.2 Paired image-to-image generation

We have discussed in Section 25.4 how using paired data of the form (xn,yn) can be used to build
conditional generative models of p(x|y). In some cases, the conditioning variable y has the same
size and shape as the output variable x. The resulting model pθ(x|y) can then be used to perform
image to image translation, as illustrated in Figure 25.16, where y is drawn from the source
domain, and x from the target domain. Collecting paired data of this form can be expensive,
but in some cases, we can acquire it automatically. One such example is image colorization, where
a paired dataset can easily be obtained by processing color images into grayscale images (see e.g.,
[Jas]).
A conditional GAN used for paired image-to-image translation was proposed in [Iso+17], and

is known as the pix2pix model. It uses a U-net style architecture for the generator, as used for
semantic segmentation tasks. However, they replace the batch normalization layers with instance
normalization, as in neural style transfer.
For the discriminator, pix2pix uses a patchGAN model, that tries to classify local patches as

being real or fake (as opposed to classifying the whole image). Since the patches are local, the
discriminator is forced to focus on the style of the generated patches, and ensure they match the
statistics of the target domain. A patch-level discriminator is also faster to train than a whole-image
discriminator, and gives a denser feedback signal. This can produce results similar to Figure 25.16
(depending on the dataset).

25.7.1.3 Unpaired image-to-image generation

A major drawback of conditional GANs is the need to collect paired data. It is often much easier
to collect unpaired data of the form Dx = {xn : n = 1 : Nx} and Dy = {yn : n = 1 : Ny}. For
example, Dx might be a set of daytime images, and Dy a set of night-time images; it would be
impossible to collect a paired dataset in which exactly the same scene is recorded during the day and
night (except using a computer graphics engine, but then we wouldn’t need to learn a generator).
We assume that the datasets Dx and Dy come from the marginal distributions p(x) and p(y)
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Sampling from DGMs (4)

text-to-image (DALL-E 1/2)
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21.4. TRANSFORMER DECODERS

Figure 21.7: Illustration of attention in the music transformer. Different colored lines correspond to the 6
attention heads. Line thickness corresponds to attention weights. From Figure 8 of [Hua+18a]. Used with
kind permission of Anna Huang.

(a) an armchair in the shape of an avo-
cado.

(b) an illustration of a baby hedgehog in
a christmas sweater walking a dog

Figure 21.8: Some images generated by the DALL-E model in response to a text prompt. (a) “An armchair in
the shape of an avocado”. (b) “An illustration of a baby hedgehog in a christmas sweater walking a dog”. From
https: // openai. com/ blog/ dall-e . Used with kind permission of Aditya Ramesh.

straightforward, and most of the effort went into data collection (they scrape the web for 250 million
image-text pairs) and scaling up the training (they fit a model with 12 billion parameters). Here we
just focus on the algorithmic methods.
The basic idea is to transform an image x into a sequence of discrete tokens z using a discrete

VAE model (Section 20.6.5), which defines a model of the form p(x, z). We then fit a transformer to
the concatentation of the image tokens z and text tokens y to get a model of the form p(z,y).
To sample an image x given a text prompt y, we sample a latent code z ∼ p(z|y), and then we

feed z into the VAE decoder to get x ∼ p(x|z). Multiple images are generated for each prompt, and
these are then ranked according to a pre-trained critic, which gives them scores depending on how
well the generated image matches the input text: sn = critic(xn,yn). The critic they used was the
contrastive CLIP model (see Section 32.1). This discriminative reranking significantly improves the
results.

Some sample results are shown in Figure 21.8, and more can be found online at https://openai.
com/blog/dall-e/. The image on the right of Figure 21.8 is particularly interesting, since the
prompt — “An illustration of a baby hedgehog in a christmas sweater walking a dog” — arguably
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text-to-text, few shot learning (GPT-3)
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Figure 21.5: Illustration of few shot learning with GPT-3. The model is asked to create an example sentence
using a new word whose meaning is provided in the prompt. Boldface is GPT-3’s completions, light gray is
human input. From Figure 3.16 of [Bro+20b].

Figure 21.6: A snippet of a piano performance visualized as a pianoroll (left) and encoded as performance
events (right, serialized from left to right and then down the rows). There are 128 discrete values for note
on/off, 32 values for velocity, and 100 for time shift, so the input is a sequence of one-hot vectors of length
388. From Figure 7 of [Hua+18a]. Used with kind permission of Anna Huang.

for a visualization. To best appreciate the quality of the generated output, please see the interactive
demo at https://magenta.tensorflow.org/music-transformer.

21.4.3 Text-to-image generation (DALL-E)

The DALL-E model1 from OpenAI [Ram+21] can generate images of remarkable quality and
diversity given text prompts, as shown in Figure 21.8. The methodology is conceptually quite

1. The name is derived from the artist Salvador Dalí and Pixar’s movied “WALL·E”
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DGMs can also be used for. . .
• Density estimation

▶ Outlier detection
▶ Data compression
▶ Generative classifiers
▶ Model comparison

• Imputation to fill in missing values

• Structure discovery (via latent variable z)

• Representation learning (via latent variable z)

• Interpolation between data points

• Training data generation

• Few-shot learners

• . . .

• For CV, see related course: CS 668 Generative Computer Vision
Models (FSS)

38 / 67



Generating sequences
• So far, we focused on RNNs encoders

▶ E.g., to obtain fixed-dimensional element representation
(contextualized representation)

▶ E.g., to obtain fixed-dimensional sequence representation (thought
vector)

• We now look at deep generative models for sequence data. . .
▶ Distribution p(y) ∈ Y∗ over sequences of elements from Y
▶ Example: Language model, where Y is a discrete set of characters

/ tokens / words
▶ Example: Time series model, where Y = R (univariate) or Y = RD

(multivariate)
▶ Special case: (probabilistic) RNN decoder

• . . . and then at conditional generative models
▶ Special cases: encoder-decoder RNN, decoder-only RNN

• We focus on plain RNNs throughout
▶ But discussion also applies to other sequence models such as RNNs

with attention or Transformer models (cf. lecture 08)
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Autoregressive generative models
• To keep notation uncluttered, we write yt for y(t) etc.

• Autoregressive generative models decompose the joint
distribution into next-element distributions using the product
rule

p(y1:τ ) = p(y1)p(y2|y1)p(y3|y1, y2) · · ·

=

τ∏

t=1

p(

next element︷︸︸︷
yt |

past elements︷ ︸︸ ︷
y1:t−1 )︸ ︷︷ ︸

next-element distribution pt(yt)

▶ Can be done for any distribution
▶ E.g., for categorical outputs, pt(y) = categorical distribution
▶ E.g., for real-valued outputs, pt(y) = continuous distribution

(e.g., normal distribution)
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Model Chapter Density Sampling Training Latents Architecture
PGM-D Chapter 4 Exact, fast Fast MLE Optional Sparse DAG
PGM-U Chapter 4 SA, slow Slow MLE-A Optional Sparse graph
FA Chapter 27 Exact, fast Fast MLE RD Linear
HMM Chapter 28 Exact, fast Fast MLE {1, . . . , K}T Chain
SSM-LG Chapter 29 Exact, fast Fast MLE RL×T Chain
SSM-NLG Chapter 29 SA, fast Fast MLE-A RL×T Chain
VAE Chapter 20 LB, fast Fast MLE-LB RL Encoder-Decoder
AR Chapter 21 Exact, fast Slow MLE None Sequential
Flows Chapter 22 Exact, slow/fast Slow MLE RD Invertible
EBM Chapter 23 SA, slow Slow MLE-A Optional Discriminative
Diffusion Chapter 24 LB Slow MLE-LB RD Encoder-Decoder
GAN Chapter 25 NA Fast Min-max RL Generator-Discriminator

Table 19.1: Characteristics of common kinds of generative model. Models above the line are “classical”
probabilistic graphical models; models below the line are considered to be “deep” generative models (even though
some of the models above the line can also use neural networks). Here D is the dimensionality of the observed
x (for time series data, we assume x is D × T dimensional), and L is the dimensionality of the latent z, if
present. Abbreviations: MLE-A = MLE (Approximate), AR = autoregressive, EBM = Energy Based Model,
FA = factor analysis, GAN = generative adversarial network, HMM = hidden Markov model, LB = lower
bound, MLE = maximum likelihood estimation, MLE-LB = maximizing lower bound of the likelihood, PGM-D
= directed probabilistic graphical model, PGM-U = undirected probabilistic graphical model, SA = stochastic
approximation, SSM = state space model, SSM-LG = linear Gaussian SSM, SSM-NLG = non-linear and/or
non-Gaussian SSM, VAE = variational autoencoder.

0/1

... ... ...

Discriminator

Encoder

Generator

Flow

Decoder

Inverse

GAN: 
Adversarial

training

VAE: Maximize 
variational lower 

bound

Flow-based Model: 
Invertible transform of 

distributions

Diffusion Model: 
Gradually add 

Gaussian noise and 
then reverse

R
EnergyEBM: 

Approximate 
Maximum 
likelihood

... ... ...

Autoregressive 
model: Learn 

conditional of each 
variable given past

Figure 19.1: Summary of various kinds of deep generative model. Here x is the observed data, z is the latent
code, and x′ is a sample from the model. AR models do not have a latent code z. For diffusion models and
flow models, the size of z is the same as x. For AR models, xd is the d’th dimension of x. For diffusion
models, xt is the t’th “noised up version of x, where x0 = x and z = xT . Adapted from Figure 1 of [Wen21].
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Next-element distributions
• Recall: pt(y)

def
= p(y|y1:t−1)

▶ Convention: y for random variable, yt for concrete sample

• Example: categorical data
▶ C categories → can represent pt(y) with probability vector pt ∈ SC
▶ Deep autoregressive models compute pt from past outputs y1:t−1

(e.g., via a deep network + softmax layer)
▶ Example: Categories { red, green, blue } (C = 3)
▶ pt =

(
0.8 0.05 0.15

)
▶ Samples: red (with prob. 80%), green (5%), or blue (15%)

• Example: real-valued data, normal distribution
▶ pt(y) has form N (y;µt, σ

2
t )

▶ Deep autoregressive models compute µt and σ2
t from past outputs

(e.g., via a deep network + linear layer)
▶ Example: µt = 5, σ2

t = 2
▶ Samples: 5.337371, 3.874985, 6.089283, . . .

• Generally, at each time step
1. Determine (parameters of) pt via deep model
2. Sample from pt
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Sampling from autoregressive generative models
• To generate, forward sample iteratively from pt(y) = p(y|y1:t−1)

1. Generate y1 by sampling from p1(y) = p(y) The
2. Generate y2 by sampling from p2(y) = p(y|y1) dog
3. Generate y3 by sampling from p3(y) = p(y|y1:2) ate
4. Generate y4 by sampling from p4(y) = p(y|y1:3) the
5. Generate y5 by sampling from p5(y) = p(y|y1:4) cake
6. . . .

• Sampling process can continue endlessly
▶ I.e., infinitely long sequences can be generated
▶ To handle finite sequences of different lengths, a special

end-of-sequence (EOS) marker can be used to stop generation
▶ E.g., end-of-sequence token used in language models: stop

generation as soon as yt = EOS_TOKEN

• Finding top-k most likely outputs more involved
▶ E.g., most probable sequence may start with a low-probability

element → greedy methods don’t work
▶ Common heuristic: beam search
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Assumptions needed
• In principle, any distribution p(y) can be modeled

▶ But: next-element distributions become more and more complex

• Example: binary data, next-element distributions specified using
conditional probability tables
▶ p1(y) → 2 entries (p(y = 0) and p(y = 1))
▶ p2(y) → 4 entries (p(y = 0|y1 = 0), . . . )
▶ . . .
▶ p(y|y1:t−1) → 2t entries → exponential increase in parameters

• Need to make further assumptions to reduce complexity
• Example: Markov chain of order k (window size, context size)

▶ Makes Markov assumption

p(y|y1:t−1) = p(y|yt−k:t−1) = p(yk+1 = y|y1:k = yt−k:t−1)

▶ I.e., only look at k most recent outputs & use same distribution p
across time steps

▶ For example above, 2k parameters in total
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Outline

1. Sequence models

2. RNN encoders

3. Catastrophic forgetting

4. Deep Autoregressive Models

5. RNN decoders

6. Linear Recurrences and SSMs
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Autoregressive modelling using an RNN (1)
• Can use an RNN to specify the next-element distribution pt(y)

▶ Must be unidirectional
→ Autoregressive (cannot access future outputs)

▶ Outputs yt must be stochastic
→ Sampled from probability distribution pt(y)

▶ RNN must have output-to-hidden connections
→ Else output yt cond. independent from y1:t−1 given zt−1

• Example architecture of such an RNN decoder
RNN Unfolded RNN (5 steps)

ztzt−1

pt

ytyt−1

sample

z

p

y The dog ate the cake

p1 p2 p3 p4 p5

pt(y) = p(y|y1:t−1) = p(y|yt−1, zt−1)
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Autoregressive modelling using an RNN (2)
• Generally: unidirectional, stochastic outputs, output-to-hidden

▶ E.g., zt = fθ(zt−1, yt−1) and yt sampled from pt(y)
def
= pθ(y|zt)

▶ Example (RNN): LSTM, then zt = (ct,ht)
▶ Example (discrete output): pθ(y|zt) obtained by sampling from

categorical distribution (with parameters pt = gθ(zt))
▶ Example (continuous output): pθ(y|zt) obtained by sampling from

normal distribution (with parameters (µt,Σt) = gθ(zt))

• Computational cost at each time step constant
▶ In particular, does not increase over time

• Additional information can be provided and used
▶ E.g., for time series, may provide known “inputs” xt such as date,

weekday, time, . . . at each time step (cf. slide 50)
▶ E.g., condition c in conditional generative models
▶ E.g., attention to prior outputs (more later)
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Conditional deep autoregressive models
• Deep autoregressive models can also be used as conditional

generative models
▶ Recall: we model p(y|c), where c can be seen as an “input”

• General approach: use input-dependent next-element distributions
of form

pt(y) = p(y|y1:t−1, c)

• Key approaches
▶ Encoder-decoder models
▶ Decoder-only models
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Encoder-decoder models
• Encoder-decoder models generally

▶ Use an encoder to compute representation z of input c
▶ Use z to condition the decoder, i.e., pt(y) = p(yt|y1:t−1, z)
▶ Generally, input and output may be of different types

(A-to-B models)

• Plain encoder-decoder RNNs do this by feeding thought vector
of encoder as the initial hidden state into the decoder
▶ Note: Encoder can be bi-directional
▶ Example: Google smart reply (from 2015)
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Decoder-only models

• Decoder-only models condition on c as a “prior output”

p(y|c) = p(c∥y)
p(c)

▶ Here ∥ means concatenation
▶ Think: Probability of outputting y after c has already been

generated
▶ Input and output must be of same type

• Example: forecasting for a time series
▶ c = observed past values
▶ y = future values

• Example: prompts in (large) language models
▶ c = (Are, you, free, tomorrow?, END_OF_INPUT)
▶ y = (Yes, what’s, up?)
▶ c∥y = (Are, you, free, tomorrow?, END_OF_INPUT, Yes, what’s, up?)
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Example: DeepAR (Amazon)
• Probabilistic forecasting based on RNNs with stochastic units

• Focus: scenarios with many related time series
(energy consumption of individual households, demand of products)

• Allows to fit more complex models, little feature engineering

Training Prediction

zi,t−2, xi,t−1

hi,t−1

`(zi,t−1|θi,t−1)

zi,t−1

zi,t−1, xi,t

hi,t

`(zi,t|θi,t)

zi,t

zi,t, xi,t+1

hi,t+1

`(zi,t+1|θi,t+1)

zi,t+1

inputs

network

z̃i,t−2, xi,t−1

hi,t−1

`(zi,t−1|θi,t−1)
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hi,t

`(zi,t|θi,t)
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z̃i,t+1

inputs

network

samples

z̃ ∼ `(·|θ)

Figure 2: Summary of the model. Training (left): At each time step t, the inputs to the network
are the covariates xi,t, the target value at the previous time step zi,t−1, as well as the previous
network output hi,t−1. The network output hi,t = h(hi,t−1, zi,t−1,xi,t,Θ) is then used to compute
the parameters θi,t = θ(hi,t,Θ) of the likelihood `(z|θ), which is used for training the model
parameters. For prediction, the history of the time series zi,t is fed in for t < t0, then in the
prediction range (right) for t ≥ t0 a sample ẑi,t ∼ `(·|θi,t) is drawn and fed back for the next
point until the end of the prediction range t = t0 + T generating one sample trace. Repeating this
prediction process yields many traces representing the joint predicted distribution.

Especially in the demand forecasting domain, one is often faced with highly erratic, intermittent or
bursty data which violate core assumptions of many classical techniques, such as Gaussian errors,
stationarity, or homoscedasticity of the time series. Since data preprocessing methods (e.g. [2])
often do not alleviate these conditions, forecasting methods have also incorporated more suitable
likelihood functions, such as the zero-inflated Poisson distribution, the negative binomial distribution
[19], a combination of both [4], or a tailored multi-stage likelihood [18].

Sharing information across time series can improve the forecast accuracy, but is difficult to accom-
plish in practice, because of the often heterogeneous nature of the data. Matrix factorization methods
(e.g. the recent work of Yu et al. [22]), as well as Bayesian methods that share information via hi-
erarchical priors [4] have been proposed as mechanisms for learning across multiple related time
series and leveraging hierarchical structure [12].

Neural networks have been investigated in the context of forecasting for a long time (see e.g. the
numerous references in the survey [23], or [7] for more recent work considering LSTM cells).
More recently, Kourentzes [16] applied neural networks specifically to intermittent data but ob-
tained mixed results. Neural networks in forecasting have been typically applied to individual time
series, i.e. a different model is fitted to each time series independently [14, 8, 6]. On the other hand,
outside of the forecasting community, time series models based on recurrent neural networks have
been very successfully applied to other applications, such as natural language processing [9, 20],
audio modeling [21] or image generation [10]. Two main characteristics make the forecasting set-
ting that we consider here different: First, in probabilistic forecasting one is interested in the full
predictive distribution, not just a single best realization, to be used in downstream decision making
systems. Second, to obtain accurate distributions for (unbounded) count data, we use a negative Bi-
nomial likelihood, which improves accuracy but precludes us from directly applying standard data
normalization techniques.

3 Model

Denoting the value of time series i at time t by zi,t, our goal is to model the conditional distribution

P (zi,t0:T |zi,1:t0−1,xi,1:T )

of the future of each time series [zi,t0 , zi,t0+1, . . . , zi,T ] := zi,t0:T given its
past [zi,1, . . . , zi,t0−2, zi,t0−1] := zi,1:t0−1, where t0 denotes the time point from which we
assume zi,t to be unknown at prediction time, and xi,1:T are covariates that are assumed to be
known for all time points. To prevent confusion we avoid the ambiguous terms “past” and “future”
and will refer to time ranges [1, t0 − 1] and [t0, T ] as the conditioning range and prediction range,
respectively. During training, both ranges have to lie in the past so that the zi,t are observed, but
during prediction zi,t is only available in the conditioning range. Note that the time index t is
relative, i.e. t = 1 can correspond to a different actual time period for each i.
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Figure 3: Example time series of ec. The vertical line separates the conditioning period from the
prediction period. The black line shows the true target. In the prediction range we plot the p50 as
a blue line (mostly zero for the three slow items) and the 80% confidence interval (shaded). The
model learns accurate seasonality patterns and uncertainty estimates for items of different velocity
and age.

item variances). However, scaling by the average value νi = 1 + 1
t0

∑t0
t=1 zi,t, as we do in our

experiments, is a heuristic that works well in practice.

Secondly, due to the imbalance in the data, a stochastic optimization procedure that picks training
instances uniformly at random will visit the small number time series with a large scale very infre-
quently, which result in underfitting those time series. This could be especially problematic in the
demand forecasting setting, where high-velocity items can exhibit qualitatively different behavior
than low-velocity items, and having an accurate forecast for high-velocity items might be more im-
portant for meeting certain business objectives. To counteract this effect, we sample the examples
non-uniformly during training. In particular, in our weighted sampling scheme, the probability of
selecting a window from an example with scale νi is proportional to νi. This sampling scheme is
simple, yet effectively compensates for the skew in Fig. 1.

3.4 Features

The covariates xi,t can be item-dependent, time-dependent, or both.3 They can be used to provide
additional information about the item or the time point (e.g. week of year) to the model. They can
also be used to include covariates that one expects to influence the outcome (e.g. price or promotion
status in the demand forecasting setting), as long as the features’ values are available also in the
prediction range. In all experiments we use an “age” feature, i.e., the distance to the first observation
in that time series. We also add day-of-the-week and hour-of-the-day for hourly data, week-of-year
for weekly data and month-of-year for monthly data.4 Further, we include a single categorical item
feature, for which an embedding is learned by the model. In the retail demand forecasting data sets,
the item feature corresponds to a (coarse) product category (e.g. “clothing”), while in the smaller
data sets it corresponds to the item’s identity, allowing the model to learn item-specific behavior. We
standardize all covariates to have zero mean and unit variance.

4 Applications and Experiments

We implement our model using MXNet, and use a single p2.xlarge AWS instance containing 4 CPUs
and 1 GPU to run all experiments. On this hardware, a full training & prediction run on the large
ec dataset containing 500K time series can be completed in less than 10 hours. While prediction is
already fast, is can easily parallelized if necessary. A description of the (simple) hyper-parameter
tuning procedure, the obtained hyper-parameter values, as well as statistics of datasets and running
time are given in supplementary material.

Datasets – We use five datasets for our evaluations. The first three–parts, electricity, and
traffic–are public datasets; parts consists of 1046 aligned time series of 50 time steps each,
representing monthly sales for different items of a US automobile company [18]; electricity
contains hourly time series of the electricity consumption of 370 customers [22]; traffic, also
used in [22], contains the hourly occupancy rate, between 0 and 1, of 963 car lanes of San Francisco
bay area freeways. For the parts dataset, we use the 42 first months as training data and report
error on the remaining 8. The results for electricity and traffic are computed using a rolling

3Covariates xi,t that do not depend on time are handled by repeating them along the time dimension.
4Instead of using dummy variables to encode these, we simply encode them as increasing numeric values.
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Example: RNNs for language modeling (1)
• Language model = distribution over sequences of

characters/tokens/words
▶ Can use RNN trained to predict next character/token/word

• Fun results with RNNs; e.g., write like Shakespeare:
Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I’ll have the heart of the wars.

51 / 67
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Example: RNNs for language modeling (2)
Visualization of the activation of some particular hidden neuron in
each time step of a character-level language model.

Quotes neuron

Sentiment neuron

Typical neuron

52 / 67Radford et al., 2017; Karpathy, 2015
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Discussion
• Encoder-decoder models

▶ Input and output may be of different types
▶ Separate models for input and output
▶ Trained with suitable input/output examples

• Decoder-only models (also called: causal decoder-only)
▶ Input and output of same type
▶ Same model for input and output (both uni-directional)
▶ No need to decide on what is input and output during training

• Intermediate: non-causal decoder-only models
▶ Input and output of same type
▶ Bi-directional on input, uni-directional on output
▶ Same model for input/output, but “future” connections on output “cut”
▶ Trained with suitable input/output examples

• When to use which? → depends. . .
▶ Encoder-decoder models when input/output types/dist. differ
▶ Decoder-only models natural for forecasting applications
▶ E.g., for NLP tasks, Wang et al. (2022): decoder-only had strong

zero-shot performance, but non-causal decoder-only models superior
with multi-task training data 53 / 67
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Training deep autoregressive models
• Parameters θ of deep autoregressive models can be learned from

training data

• For training example y∗, we have

pθ(y
∗) =

∏

t

pθ(y
∗
t |y∗1:t−1)

• Quantities pθ(y∗t |y∗1:t−1) correspond to
▶ Probability that model generates correct element y∗t at position t
▶ Given that it generated all previous elements correctly

• E.g., for categorical data, may use ERM with log loss

− log pθ(y
∗) = −

∑

t

log pθ(y
∗
t |y∗1:t−1)

▶ Observe: Model trained for next-element prediction
▶ Sometimes referred to as (full) language modelling objective

• This approach is called teacher forcing
▶ Errors in earlier time steps do not propagate (during training)
▶ Alternative: use

∏
t pθ(y

∗
t |y1:t−1), where y1:t−1 are sampled model

outputs 54 / 67



Training RNN decoders
For RNNs, we can compute pθ(y∗) for a given y∗ by omitting the
sampling step as follows:

RNN Unfolded RNN to compute p(y∗)

ztzt−1

pt

ytyt−1

sample

← multiply pt(yt)’s

The dog ate the cake

p1 p2 p3 p4 p5

• Note: RNN decoders can also be non-probabilistic
▶ Direct prediction, no sampling step
▶ Then not a generative model, but produces a fixed sequence for

fixed inputs
▶ Generally only “useful” for conditional models and/or models with

inputs at each time step
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Outline

1. Sequence models

2. RNN encoders

3. Catastrophic forgetting

4. Deep Autoregressive Models

5. RNN decoders

6. Linear Recurrences and SSMs
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Parallel processing
• GPUs and TPUs are often used for training/inference

▶ Have many “processors” that work (somewhat) independently
(10,000s per unit)

▶ Goal: use all these processors → high utilization → high efficiency

• Local compute (e.g., MLP) in part-based models
▶ Computations for each part are independent
▶ Can be processed in parallel (e.g., one processor per part)

• What about contextualization?
▶ In CNNs: easy to parallelize, as computations at each “kernel

position” are independent (e.g., one processor per position)
▶ In RNNs: hard to parallelize, as operation at time step t needs

input from time step t− 1 (e.g., zt−1) → slow

• Traditionally, one reason to avoid RNNs
▶ E.g., in favor of CNNs or Transformers

• Can we do better?
▶ Yes, for encoders and when recurrences are linear
▶ Decoders: limited as output-to-hidden connections impose

sequential processing 57 / 67



Linear recurrences (univariate case)
• Consider a linear recurrence of form

zt = azt−1 + bxt yt = czt−1 + dxt

▶ a, b, c, d ∈ R are parameters
▶ xt ∈ R is part representation (original input/output of previous layer)
▶ zt ∈ R is hidden state → linear in zt−1 and xt
▶ yt ∈ R is contextualized part representation (output)
→ linear in zt−1 and xt (equivalently: zt and xt)

▶ Each computation takes time O(1)

• Suppose initial state z0 = 0; we then have

z1 = bx1 y1 = dx1

z2 = abx1 + bx2 y2 = cdx1 + dx2

z3 = a2bx1 + abx2 + bx3 y3 = c2dx1 + cdx2 + dx3

zt =
∑t

k=1 a
t−kbxk yt =

∑t
k=1 c

t−kdxk

• We can parallelize this computation via a parallel scan
→ very general method; in this lecture: variant for our setting 58 / 67

https://arxiv.org/abs/1709.04057


Parallel scan (univariate case, algorithm)
Suppose we have P processors. Divide the sequence of length τ into
P parts of length L = τ/P .
1. Run the original RNN on each part 1 ≤ p ≤ P to compute the

final hidden states zpL, i.e.:

zpL =

L∑

k=1

aL−kbxpk where xpk is k-th element of p-th part

2. Run the following linear RNN on these P final states to compute
starting states sp for each part 1 ≤ p ≤ P

s1 = 0 sp+1 = aLsp + zpL

3. Run the original RNN again on each part, but this time starting
with initial state sp on each part p
▶ Part 1: s1 = 0 → state z0 of original RNN
▶ Part 2: s2 = z1L =

∑L
k=1 a

L−kbxk → state zL of original RNN
▶ Part 3: s3 = aLz1L + z2L =

∑2L
k=1 a

2L−kbxk → state z2L of original RNN
▶ . . .

We thus obtain the outputs of the original RNN. 59 / 67



Parallel scan (univariate case, discussion)

What did we gain?
1. Run the original RNN on each part

▶ Can be run in parallel for each part → time O(τ/P )

2. Run a linear RNN to obtain starting states
▶ Need aL → time O(1)
▶ Naively: sequential in time O(P )
▶ Better (for large P ): use another parallel scan to do this

3. Run the original RNN again on each part
▶ Can be run in parallel for each part → time O(τ/P )

Discussion
• Can use different parameter at ∈ R instead of a at time step t
→ (more) general parallel scan (used in practice in some models)

• Can show: overall O(τ/P + logP ) → essentially parallel

• Same approach to compute yt’s & for backprop
60 / 67
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Linear recurrences (multivariate case)
• Consider a linear recurrence of form

zt = Azt−1 +Bxt yt = Czt−1 +Dxt

▶ A,B,C,D ∈ RD×D are parameters
▶ xt ∈ RD is part representation (original input/output of previous layer)
▶ zt ∈ RD is hidden state → linear in zt−1 and xt
▶ yt ∈ RD is contextualized part representation (output)
→ linear in zt−1 and xt (equivalently: zt and xt)

▶ Each computation takes time O(D2)

• Suppose initial state z0 = 0; we then have

z1 = Bx1 y1 =Dx1

z2 = ABx1 +Bx2 y2 = CDx1 +Dx2

z3 = A
2Bx1 +ABx2 +Bx3 y3 = C

2Dx1 +CDx2 +Dx3

zt =
∑t

k=1A
t−kBxk yt =

∑t
k=1C

t−kDxk

• We can parallelize this computation via a parallel scan
→ very general method; in this lecture: variant for our setting 61 / 67

https://arxiv.org/abs/1709.04057


Parallel scan (multivariate case, algorithm)
Suppose we have P processors. Divide the sequence of length τ into
P parts of length L = τ/P .
1. Run the original RNN on each part 1 ≤ p ≤ P to compute the

final hidden states zpL, i.e.:

zpL =

L∑

k=1

AL−kBxp
k where xp

k is k-th element of p-th part

2. Run the following linear RNN on these P final states to compute
starting states sp for each part 1 ≤ p ≤ P

s1 = 0 sp+1 = A
Lsp + z

p
L

3. Run the original RNN again on each part, but this time starting
with initial state sp on each part p
▶ Part 1: s1 = 0 → state z0 of original RNN
▶ Part 2: s2 = z1L =

∑L
k=1A

L−kBxk → state zL of original RNN
▶ Part 3: s3 = ALz1L + z2L =

∑2L
k=1A

2L−kBxk → state z2L of orig. RNN
▶ . . .

We thus obtain the outputs of the original RNN. 62 / 67



Parallel scan (multivariate case, discussion)

What did we gain?
1. Run the original RNN on each part

▶ Can be run in parallel for each part → time O(D2τ/P )

2. Run a linear RNN to obtain starting states
▶ Need AL → time O(D3)
▶ Naively: sequential in time O(D3 +D2P )
▶ Better (for large P ): use another parallel scan to do this

3. Run the original RNN again on each part
▶ Can be run in parallel for each part → time O(D2τ/P )

Discussion
• Can use different parameter At ∈ RD×D instead of A at time step t
→ (more) general parallel scan (used in practice in some models)

• Can show: overall O((D3 +D2)(τ/P + logP ))
→ For D ≥ P , slower than sequential RNN (!)

• Same approach to compute yt’s & for backprop
63 / 67
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Structured state space models
• Problem is essentially the O(D3) cost of matrix multiplication
• Can we improve? Yes, by imposing structure on A (and C)

▶ E.g.: A (and C) diagonal
▶ Matrix powers then have cost O(D) → problem solved
▶ But: less flexible in choice of A (and C) → tradeoff

• Idea is at the heart of (deep) structured state space models (SSM)
▶ (Discretized) state space model ≈ hidden states + linear recurrences
▶ Structured ≈ restrictions on A (and C)
▶ Network can be entirely linear. . .
▶ . . . or introduce non-linearities in local compute parts (only)
▶ May use At, Bt, Ct, and Dt “computed” from xt (e.g., Mamba)

• Many deep SSM architectures exist
▶ Think: modern RNNs
▶ Total cost linear in sequence length & highly parallelizable
▶ Empirically: very good performance in sequence modelling tasks,

esp. for very long sequences (up to millions of elements)
▶ Empirically: parameter efficient
▶ Many additional “tricks” (e.g., Centaurus, 2025)
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Example: Mamba, 2023 (building block)
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Example: Mamba, 2023 (speech generation)
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Example: Mamba, 2023 (language modelling)
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Outline

1. Attention

2. Transformer Encoders

3. From sets to sequences

4. Transformer decoders
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Recap: RNN encoder-decoder architecture

• Network first “reads” the input x = encoding
▶ Encodes relevant information into a global representation, say, the

thought vector z
• Network then “generates” the output y = decoding

▶ Output (distribution of) y solely based on thought vector z
▶ Inputs x of encoder not accessed: output y cond. independent of

input x given thought vector z, i.e.,

p(y | x) = p(y | x, z) = p(y | z)
• This is often too limiting!

3 / 48Google Research Blog, 2015
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Motivating example: The center-number task
• Consider the following center-number task

▶ Input: a sequence x1, . . . , xτ of numbers, where τ varies
▶ Desired output: xτ/2, i.e., the number in the center position
▶ E.g.,

(
4 2 3 5 1

)
→ 3

▶ E.g.,
(
4 2 3 5 1 8 9 6 7

)
→ 1

• Cannot be solved with a (unidirectional) encoder-decoder RNN
▶ To enable perfect prediction, after reading t numbers, thought

vector needs to encode the last t/2 numbers xt/2, . . . , xt

▶ Why? Each of these integers may be a potential output
(e.g., xt/2 for τ = t, xt for τ = 2t)

▶ Generally impossible since thought vector has fixed dimensionality
• Task trivial if decoder could access the input again

▶ Thought vector then only needs to encode length τ of input
▶ Decoder “computes” τ/2, then accesses and outputs input xτ/2
▶ That’s the key idea of RNNs with attention
▶ We say: the decoder attends to input xτ/2
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Attention
• Attention groups multiple inputs into a fixed-length representation

▶ Inputs are unordered (i.e., form a multiset)
▶ Number of inputs not fixed, but may vary
▶ E.g., τ elements in RD to one value in RD

• Grouping is
▶ Simple, e.g., a weighted average
▶ Often focused on a small subset of the inputs
▶ Dynamic in that it depends on network state and values of inputs
▶ E.g., in the decoder of an RNN, relevant inputs (high attention

weights) for each output element may change over time (cf. sl. 6)

• Generally, a mechanism for network design; many variants
▶ Can be used with RNNs, CNNs, standalone, . . .
▶ Often, in a part-based model, the inputs to attention correspond to

the parts

• Our focus: attention for encoder-decoder RNNs (first),
self-attention/Transformers (afterwards)
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Examples

Translation Image captioning

Published as a conference paper at ICLR 2015
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Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight αij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Neural Image Caption Generation with Visual Attention

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. “soft”
(top row) vs “hard” (bottom row) attention. (Note that both models generated the same captions in this example.)

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

two variants: a “hard” attention mechanism and a “soft”
attention mechanism. We also show how one advantage of
including attention is the ability to visualize what the model
“sees”. Encouraged by recent advances in caption genera-
tion and inspired by recent success in employing attention
in machine translation (Bahdanau et al., 2014) and object
recognition (Ba et al., 2014; Mnih et al., 2014), we investi-
gate models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:
• We introduce two attention-based image caption gen-

erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

• We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on. (see Sec. 5.4)

• Finally, we quantitatively validate the usefulness of
attention in caption generation with state of the art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013) , Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work
In this section we provide relevant background on previous
work on image caption generation and attention. Recently,
several methods have been proposed for generating image
descriptions. Many of these methods are based on recur-
rent neural networks and inspired by the successful use of
sequence to sequence training with neural networks for ma-
chine translation (Cho et al., 2014; Bahdanau et al., 2014;
Sutskever et al., 2014). One major reason image caption
generation is well suited to the encoder-decoder framework
(Cho et al., 2014) of machine translation is because it is
analogous to “translating” an image to a sentence.

The first approach to use neural networks for caption gener-
ation was Kiros et al. (2014a), who proposed a multimodal
log-bilinear model that was biased by features from the im-
age. This work was later followed by Kiros et al. (2014b)
whose method was designed to explicitly allow a natural
way of doing both ranking and generation. Mao et al.
(2014) took a similar approach to generation but replaced a
feed-forward neural language model with a recurrent one.
Both Vinyals et al. (2014) and Donahue et al. (2014) use
LSTM RNNs for their models. Unlike Kiros et al. (2014a)
and Mao et al. (2014) whose models see the image at each
time step of the output word sequence, Vinyals et al. (2014)
only show the image to the RNN at the beginning. Along

6 / 48Bahdanau and Cho, 2015; Xu et al., 2016

https://arxiv.org/pdf/1409.0473.pdf
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Why attention?
• Attention provides “access” to all inputs (soft memory)

▶ No fixed-length representations as in a pure encoder-decoder RNN
▶ I.e., longer inputs → larger representation

• Attention is dynamic and learned
▶ Different parts of input may be relevant for different output elements
→ dynamic grouping

▶ Often hard to determine apriori which inputs are relevant
→ learned grouping

• Attention is general
▶ Arbitrary multiset inputs (not necessarily sequence or grid data)
▶ Positional information can be (and often needs to be) added:

{ (1, Positional), (2, information), (3, can), (4, be), (5, added) }

• Attention is easy to parallelize
▶ A flat operation: network depth independent of input length
▶ Unlike RNNs (recall: in general, no parallelization over time possible)

• Component of state-of-the-art models across many domains

7 / 48



Associative memory
• Suppose we store the input set in associative memory

▶ Recall: associative memory stores keys and corresponding values
▶ E.g., processor cache: key = memory address, value = content of

memory cell
▶ E.g., for an RNN, key = time step, value = part

Key k Value v

1 The
2 dog
3 ate
4 the
5 cake

• We can then retrieve a value by for a given query
▶ E.g., processor cache: query = memory address
▶ E.g., query = 3 → output = ate

• Here we assigned to each input xi . . .
▶ A key ki that describes input i
▶ A value vi that represents input i

• . . . and then used
▶ A query qi to express what is considered relevant 8 / 48

https://en.wikipedia.org/wiki/Content-addressable_memory


Attention as soft memory
• Attention can be viewed as a soft form of associative memory

▶ We use neural representations to represent keys, values, and query
▶ All these representations are learned
▶ Keys are learned descriptions of the input (instead of addresses)
▶ Values learned representations of the input elements

(instead of the elements themselves)
▶ A query is a learned description of the information need

(instead of an “address” or “time step”)

• Let’s represent input x1, . . . , xτ and query as follows:
▶ Keys k1, . . . ,kτ ∈ RdK

▶ Values v1, . . . ,vτ ∈ RdV

▶ Query q ∈ RdK

▶ Note: keys and values will be “computed” by some neural network
▶ Note: Dimensionalities of query/keys (dK) and values (dV ) may

differ

• How do we “answer” a query?
▶ Answer is a “grouping” of values v1, . . . ,vτ ∈ RdV

▶ Typically: Answer c ∈ RdV has same shape as a value
9 / 48



Attention over inputs (encoder-only model)
The general approach for attention in a part-based model is as
follows:

The dog ate the cake

Part 1 Part 2 Part 3 Part 4 Part 5

(k1,v1) (k2,v2) (k3,v3) (k4,v4) (k5,v5)

zEncoder

q

Attention c

y

1. Encoder computes keys, values, and global representation
2. Prediction head computes query from global representation
3. Attention is used to obtain an answer, called context vector
4. Final prediction obtained from global representation and context

vector
10 / 48



Attention
Let’s fill in the details. To answer a query, we
1. Use an attention model a(q,k)

▶ Measures the “compatibility” of each input key ki to the query q
via attention score

ei = a(q,ki)

to form an attention score vector e ∈ Rτ

▶ Higher/lower score → more/less relevant
▶ E.g., dot product: a(q,k) = k⊤q
▶ E.g., small MLP: a(q,k) = fθ(q,k)

2. Compute query-dependent attention weights α (of size τ)
▶ E.g., soft attention: α = S(e) ∈ Sτ → weighted average
▶ E.g., hard attention: αi = 1 for largest score ei, else 0
▶ E.g., linear attention: α = e ∈ Rτ → weighted sum

3. Output a context vector c, obtained by weighting each value by
its attention weight

c =
∑

i

αivi,

11 / 48



Example (dot-product attention)

• E.g., key elements: noun or verb? / subject or object? / random

Input xi Key k⊤
i Value v⊤

i

The
(
0.1 0 2

)
· · ·

dog
(

5 4 3
)

· · ·
ate

(
-4 0 -3

)
· · ·

the
(
−0.2 0 1

)
· · ·

cake
(

5 -3 -4
)

· · ·
• Queries for (i) nouns, (ii) verbs, (iii) subjects, (iv) bag of words

Query qT Scores e⊤ Weights α⊤

(i)
(

5 0 0
) (

0.5 25 −20 −1 25
) (

0 0.5 0 0 0.5
)

(ii)
(

-5 0 0
) (

−0.5 −25 20 1 −25
) (

0 0 1 0 0
)

(iii)
(

5 4 0
) (

0.5 41 −20 −1 13
) (

0 1 0 0 0
)

(iv)
(
0 0 0

) (
0 0 0 0 0

) (
0.2 0.2 0.2 0.2 0.2

)

12 / 48



Attention over inputs (encoder-decoder model)
We can use attention over inputs also in a decoder.
• Now: Attention run once per output element

• At time step t, use query qt → different context vector ct at
each time step → dynamic

• Known as cross attention: one model (here: the decoder)
attends over the outputs of another model (here: the encoder)

Example: compute qt from hidden state zt

The dog ate the cake

Part 1 Part 2 Part 3 Part 4 Part 5

(k1,v1) (k2,v2) (k3,v3) (k4,v4) (k5,v5)

Encoder · · ·

· · ·

zt−1

yt−1

zt

qt

Attention for time step t ct yt

13 / 48



Example (early architecture)
Architecture of Bahdanau and Cho (2015) for machine translation
• Uses ki = vi = (

−→
hi,
←−
hi) → hidden states of bidirect. RNN encoder

• Uses qt = zt−1 → hidden state of RNN decoder
• MLP as attention model
• Example weights shown on slide 6

Published as a conference paper at ICLR 2015

The decoder is often trained to predict the next word yt′ given the context vector c and all the
previously predicted words {y1, · · · , yt′−1}. In other words, the decoder defines a probability over
the translation y by decomposing the joint probability into the ordered conditionals:

p(y) =

T∏

t=1

p(yt | {y1, · · · , yt−1} , c), (2)

where y =
(
y1, · · · , yTy

)
. With an RNN, each conditional probability is modeled as

p(yt | {y1, · · · , yt−1} , c) = g(yt−1, st, c), (3)

where g is a nonlinear, potentially multi-layered, function that outputs the probability of yt, and st is
the hidden state of the RNN. It should be noted that other architectures such as a hybrid of an RNN
and a de-convolutional neural network can be used (Kalchbrenner and Blunsom, 2013).

3 LEARNING TO ALIGN AND TRANSLATE

In this section, we propose a novel architecture for neural machine translation. The new architecture
consists of a bidirectional RNN as an encoder (Sec. 3.2) and a decoder that emulates searching
through a source sentence during decoding a translation (Sec. 3.1).

3.1 DECODER: GENERAL DESCRIPTION

x1 x2 x3 xT

+
αt,1
αt,2 αt,3

αt,T

yt-1 yt

h1 h2 h3 hT

h1 h2 h3 hT

st-1 s t

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the t-th tar-
get word yt given a source
sentence (x1, x2, . . . , xT ).

In a new model architecture, we define each conditional probability
in Eq. (2) as:

p(yi|y1, . . . , yi−1,x) = g(yi−1, si, ci), (4)

where si is an RNN hidden state for time i, computed by

si = f(si−1, yi−1, ci).

It should be noted that unlike the existing encoder–decoder ap-
proach (see Eq. (2)), here the probability is conditioned on a distinct
context vector ci for each target word yi.

The context vector ci depends on a sequence of annotations
(h1, · · · , hTx

) to which an encoder maps the input sentence. Each
annotation hi contains information about the whole input sequence
with a strong focus on the parts surrounding the i-th word of the
input sequence. We explain in detail how the annotations are com-
puted in the next section.

The context vector ci is, then, computed as a weighted sum of these
annotations hi:

ci =

Tx∑

j=1

αijhj . (5)

The weight αij of each annotation hj is computed by

αij =
exp (eij)∑Tx

k=1 exp (eik)
, (6)

where
eij = a(si−1, hj)

is an alignment model which scores how well the inputs around position j and the output at position
i match. The score is based on the RNN hidden state si−1 (just before emitting yi, Eq. (4)) and the
j-th annotation hj of the input sentence.

We parametrize the alignment model a as a feedforward neural network which is jointly trained with
all the other components of the proposed system. Note that unlike in traditional machine translation,

3
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ctqt

Bahdanau and Cho, 2015

https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf


Discussion
• Attention allows RNN to focus on important parts of input

▶ More powerful in that available information is not limited by the
size of the hidden representation

▶ Access to input simplifies architecture and learning
▶ Exercise: write an RNN with attention for the central-number task

• In general, can attend to
▶ The prior encoder outputs in an RNN encoder
▶ The encoder outputs in an RNN decoder (cross-attention)
▶ The prior decoder outputs in an RNN decoder
▶ Or any combination of the above (individually or jointly)

• Many successful architectures and applications
▶ Part of many SOTA architectures for NLP, signal processing, vision,

neural programming
▶ E.g., content-based addressing in Neural Turing Machines
▶ E.g., self-attention instead of RNNs (coming up next)

15 / 48

https://arxiv.org/pdf/1410.5401.pdf


Outline

1. Attention

2. Transformer Encoders

3. From sets to sequences

4. Transformer decoders
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Attention is all you need
• So far, we discussed attention in the context of an RNN

▶ But is an RNN actually needed?
• Vaswani et al., NIPS 2017: Attention Is All You Need

▶ Introduced self-attention, multi-head attention, Transformers
▶ Attention only: no recurrence, no convolution
▶ Achieved SOTA results (at the time) on machine translation tasks
▶ Achieved lower training costs than competitive prior models
▶ Architecture facilitates parallel processing

• Highly influential (>170k cites) & important part of toolbox today
▶ E.g., BERT for text representation
▶ E.g. GPT-1/2/3/4 for language modelling
▶ E.g., Vision Transformer for computer vision tasks
▶ E.g., wav2vec 2.0 for speech processing
▶ E.g., GROVER for molecular data (graphs)
▶ E.g., PatchTST for time series forecasting

• Coming up: vanilla architecture and key concepts
• Later lectures: applications, concrete architectures, (pre-)training, . . .
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https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/pdf/1810.04805.pdf
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Dot-product attention as a layer
• Let’s stack the keys and values into matrices

▶ Given: q ∈ RdK , K ∈ Rτ×dK , V ∈ Rτ×dV

• Dot-product attention scores: e = Kq ∈ Rτ

• Soft attention: α = S(Kq)

• Dot-product attention

DPA(q,K,V ) = S(Kq)⊤V ∈ RdV

• Scaled dot-product attention (used in original transformer)

ScaledDPA(q,K,V ) = S(Kq/
√
dK)⊤V

▶ Vasami et al: “We suspect that for large values dK , the dot
products grow large in magnitude, pushing the softmax function
into regions where it has extremely small gradients. To counteract
this effect, we scale the dot products by

√
dk.”

▶ More in exercise
18 / 48
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Self-attention
• Self-attention refers to a type of layer for contextualization

▶ Inputs are element representations z1, . . . ,zτ ∈ Rd (i.e , “parts”)
▶ Outputs are contextualized element representation c1, . . . , cτ ∈ RdV

▶ τ may vary between inputs
• Outputs are computed from inputs using attention

▶ One query qi, key ki, value vi per input i, each computed from zi

→ This motivates the name self-attention
▶ Query qi determines what is relevant for the i-th output
→ Output ci “corresponds” to input zi

▶ Key ki serve as description of the i-th input
▶ Value vi serve as representation of the i-th input

• We have ci = Attention(qi,K,V )

Z

Q,K,VQ,K,V

C

The dog ate the cake

q1 q2 q3 q4 q5k1 k2 k3 k4 k5v1 v2 v3 v4 v5

c1 c2 c3 c4 c5
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Single-head attention
• Compact notation: C = Attention(Q,K,V )

▶ Q ∈ Rτ×dK and C ∈ Rτ×dV contain queries
and outputs as rows

▶ E.g., DPA(Q,K,V ) = Srow(QK⊤)V
▶ E.g., ScaledDPA(q,K,V ) = S(QK⊤/

√
dK)V

• Let Zτ×d be the input representations
• Example: plain self-attention (not used this way)

▶ Q = Z; K = Z, V = Z
▶ Generally not a good idea (exercise)

• Example: single-head attention
▶ Use linear projections (optionally also biases)
▶ Q = ZWQ where WQ ∈ Rd×dK

▶ K = ZWK where WK ∈ Rd×dK

▶ V = ZW V where W V ∈ Rd×dV

▶ WQ, WK , and W V are parameters
▶ dK and dV are hyperparameters (typically dK = dV = d)

20 / 48
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Multi-head attention
• Multi-head attention: attend multiple times on same inputs

▶ Terminology: head = one single-head attention layer
▶ Each head h ∈ { 1, . . . ,H } uses its own parameters

W
(h)
Q ,W

(h)
K ∈ Rd×dK and W

(h)
V ∈ Rd×dV

▶ Outputs C(h) of each head are concatenated
▶ And then projected to input space using parameter WO ∈ RHdv×d

▶ Original Transformer: dK = dV = d/H (with d = 512 and H = 8)
▶ Then: number of parameters/cost similar to single-head attention

• Beneficial because model can choose which representation
subspaces to attend to in a position-dependent way
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Computation and path lengths

(lower is better)
• Computational complexity

▶ Self-attention scales well with dimensionality but not sequence length
▶ Recurrent/convolutional: the other way around
▶ But note: table misleading, self-attention is really O(n2d+ nd2)

(due to computation of queries/keys/values, e.g., when dK = d/H)
• Sequential operations limit parallelizability → drawback of RNNs
• Larger path length between inputs and outputs makes it harder

to exploit long-range dependencies → advantage of self-attention
• As discussed, mitigated by linear RNNs / SSMs / RNN with attention

22 / 48Vaswani et al., 2017
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Transformer encoder layer
• Transformer encoder layer (encoder block)

▶ Input: lower-level element representations zl−1 =
{
zl−1
1 , . . . ,zl−1

τ

}

▶ Output: higher-level element representations zl =
{
zl
1, . . . ,z

l
τ

}

• Two steps: (1) contextualization, (2) local compute
1. Multi-head attention across elements
→ incorporate information from other elements

2. Local MLP for each element
→ update each element individually

• Residual connections / layer normalization in
between (cf. 03-3)
▶ Both attention and MLP updates do not

overwrite but “modify” the element
representation (additively)

zl

zl−1

• Every element representation depends on all other elements
(cf. bidirectional RNN)
• Template model, parameter sharing, position-independence

▶ Same projections for queries/keys/values across input elements
▶ Same parameters of MLP for each input element
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Example: T5 encoder

• Uses pre-layer normalization (Xiong et al., 2020)
▶ Layer norm right before each subcomponent
▶ Stabilizes training

• Main path also known as residual stream
▶ Updated additively by each subcomponent

• Concrete components for T5-Base
▶ d = 768-dimensional element representations
▶ H = 12 heads, each with key/value

dimensionality for each head is
dK = dV = 64 (=768 in total)

▶ MLP: dense linear layer (to 3072D) → ReLU
→ dense linear layer (to 786D)

▶ L = 12 such T5 encoder layers stacked on
top of each other

24 / 48
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Examples on how use to a Transformer encoder
• Transformer encoders produce contextualized representations zL

i
of input elements xi

▶ Used as input representation for subsequent modules
▶ Many different ways to do this

• As in part-based models for element-level tasks, may
▶ Add element-wise prediction head h on top of each zL

i
▶ Train supervised with ERM using element-level loss L(h(zL

i ), y
∗
i )

• As in part-based models for sequence-level tasks, may
▶ Pool element-level representations (e.g., sum, mean, attention) to

obtain sequence-level representation z
▶ Add prediction head h, train supervised with ERM using loss L(h(z), y∗)

• Alternative: use special classification token CLS
▶ Input data: x1, . . . , xτ

▶ Input to encoder: CLS, x1, . . . , xτ

▶ Add prediction head on only zL
CLS, which serves as a sequence-level

representation
▶ Train supervised using L(h(zL

CLS), y
∗)
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From sets to sequences
• Transformer encoders are permutation-equivariant

▶ Means: permutation of input → output permuted correspondingly
▶ That’s good for sets, but not for sequential data

• Approach 1: modify input
▶ I.e., feed f(xi, i) instead of xi into the Transformer
▶ Common approach: position embeddings

f(xi, i) = xi + posemb(i),

i.e, position-dependent embedding “applied” to input (here: added)
▶ Fixed (e.g., original Transformer, RoPE) or learned (e.g., BERT, GPT)
▶ Note: when padding inputs to common length, pad on the right (!)

• Approach 2: modify attention mechanism
▶ Based on relative distance iquery − ikey between input elements
→ relative positions

▶ E.g., add distance-dependent bias to attention scores (e.g., T5)
▶ E.g., add distance-dependent embedding to keys/values
▶ Again, fixed or learned

• Note: similar ideas used for images, graphs, tables, . . .
27 / 48
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Position encodings of original Transformer
For d-dimensional embeddings, the original Transformer used

posemb(i)[2k] = sin(i/100002k/d)

posemb(i)[2k + 1] = cos(i/100002k/d)

• i = input position; k = index in position embedding
• Sinusoidal in i, frequency decreases with k
• Transformer encoder learns how to exploit this (when trained

with these embeddings applied)
First positions/elements Later positions/elements
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Learned position encodings

29 / 48

Learned (encoder, MLM) Learned (decoder) Predefined

Wang and Chen, 2020

https://aclanthology.org/2020.emnlp-main.555.pdf


Scalar relative position encodings

30 / 48Wu et al., 2021

https://cdn.aaai.org/ojs/17654/17654-13-21148-1-2-20210518.pdf


Example: BERT (encoder-only model, 2018)
• BERT (Bidirectional Encoder Representations from Transformers)

is a sequence representation model
▶ Many variants; e.g., Sentence-BERT obtain sentence embeddings

• Given an input sequence, BERT produces representations of each
token using the Transformer encoder (no decoder)
▶ As discussed, tokens correspond to words or parts of words (e.g.,

byte-pair encoding or WordPiece)
▶ Special tokens are introduced to enhance the input or output

representation

• Key innovations of BERT (more later)
▶ A simple bidirectional encoder-only model that achieved SOTA

results across a number of NLP tasks at the time
▶ Pre-trained on large textual corpora using a suitable (i) input

encodings and (ii) self-supervised pretraining tasks
▶ Fine-tuned in supervised fashion for a particular task at hand
▶ Open-sourced (code and model)
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BERT (input representations)

• Token embeddings = embedding layer
• Segment embeddings provide additional information about input

▶ E.g., “first sentence” and “second sentence”
▶ E.g., “question” and “answer”
▶ Other side information can be included in this way as well

• Position embeddings to encode ordering
• Special tokens

▶ [CLS] token serves as representation of entire input
▶ [SEP] token used to separate sentences

32 / 48Devlin et al., 2018

https://arxiv.org/pdf/1810.04805v2.pdf


Example: BERT for search
As of 2019 (and apparently still in 2023), BERT models are used to
serve Google search queries.

33 / 48Google Blog, 2019

https://blog.google/products/search/search-language-understanding-bert/


Example: Vision Transformer (encoder)
• Same idea applicable to grid data (below), graph data (later), . . .
• Example: Vision Transformer (ViT, 2020)

▶ Input element = patch embedding + position (learned embedding)
▶ And a special [class] token (as in BERT)
▶ No spatial inductive bias → distant relationships can be modeled
▶ Provides global and patch representations
▶ Good performance in practice (→ a common backbone)
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Some Transformer models for language (1)

36 / 48LM Po, 2025

https://medium.com/@lmpo/a-brief-history-of-lmms-from-transformers-2017-to-deepseek-r1-2025-dae75dd3f59a


Some Transformer models for language (2)

37 / 48Jim Fan, 2023

https://x.com/DrJimFan/status/1651968203701231616


Recap: Autoregressive Generative Models (from 07)
• Generative model for sequence data y1, y2, . . . , yτ ∈ Y
• Output distribution decomposed into next-element distributions

p(y1:τ ) =

τ∏

t=1

p(

next element︷︸︸︷
yt |

past elements︷ ︸︸ ︷
y1:t−1 )︸ ︷︷ ︸

next-element distribution pt(yt)

• To generate, forward sample from p1(y), p2(y), . . .
• We discussed: RNN decoder with hidden state zt

▶ Use pt(y)
def
= pθ(y|zt)

▶ Example (discrete output): pθ(y|zt) is categorical distribution
(with parameters pt = gθ(zt))

▶ Example (continuous output): pθ(y|zt) is normal distribution
(with parameters (µt,Σt) = gθ(zt))

• Transformer decoders work similarly; in a nutshell
▶ pt from: hidden state zt → last-output representation dt−1

▶ Prior outputs: Recurrence/attention → masked self-attention
▶ Inputs: initial state/cross-attention → cross-attention 38 / 48



Encoder-decoder
Transformer (1)

Encoder-decoder
Transformer for seq2seq;
figure summarizes
generation of the
t-th output element yt
(for discrete elements).
• Left: encoder

• Right: decoder
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e1:τ

y1:t−1

d1:t−1

pt(y) = pθ(y|dt−1)



Encoder-decoder Transformer (2)

• Transformer encoders map inputs x1, . . . , xτ to representations
e1, . . . , eτ (last layer’s output)
• Transformer decoders define next-element distr. p(yt|x,y1:t−1)

▶ To do so, decoder maps outputs y1, . . . , yt−1 produced so far to
representations d1, . . . ,dt−1 (last layer’s output)

▶ pt(y) computed from (only) dt−1 (e.g., via softmax layer)

• Uses Transformer decoder layers: similar to encoder layers but
perform attention twice:
1. Masked self-attention to attend over all prior outputs
→ Replaces hidden-to-hidden and output-to-hidden conn. of RNNs

2. Cross attention to attend over inputs (i.e., encoder outputs)
→ Replaces attention over input in RNN decoders with attention

• Decoding yt involves
1. Compute dt−1 via transformer decoder layers
2. Determine pt(y) = pθ(y|dt−1)
3. Sample yt ∼ pt
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Example: T5 (2020) / T5X (2022)

41 / 48

https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://arxiv.org/abs/2203.17189


Masked self-attention
• Masked self-attention = attend over only a subset of inputs

▶ Mask describes set of elements to attend over
▶ Can be (and typically is) different for each position
→ controls information flow across elements

▶ Specified apriori

• Example: for position 3 out of 5, attend only over inputs 1, 2, 3

↓ Element 3’s / → for input 1 2 3 4 5
Attention scores 3 5 -1 4 3
Mask 1 1 1 0 0
Effective attention scores 3 5 -1 −∞ −∞
Attention weights 0.119 0.879 0.002 0 0

• Observe: updated representation of element 3 depends
▶ On query of element 3
▶ On keys/values of elements 1–3
▶ But not on query/keys/values of elements 4–5
→ Excluded elements do not affect output
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Masked self-attention in Transformer decoders
• Masked attention in Transformer decoders

▶ At each output position k, only attend over positions 1–k
▶ Ensures uni-directional information flow: element representations

dl
k do not depend on yk+1, yk+2, . . .

▶ As a consequence, element representations do not change when new
elements are appended by the decoder → no need to recompute

▶ E.g., to produce pt(y), “only” need to compute d1
t−1, . . . ,d

L
t−1

43 / 48Alammar (2019)

https://jalammar.github.io/illustrated-gpt2/


Masked self-attention in Transformer encoders
Masked attention also useful to reduce O(τ2) cost of self-attention.
Trade-off: representational power vs. computational cost.

44 / 48Lin et al. (2022)

https://www.sciencedirect.com/science/article/pii/S2666651022000146


Cross attention

• Recall: Cross attention generally means to attend over elements
from a different model or embedding space
• In Transformer decoders: encoder-decoder cross-attention

▶ Keys and values come from input elements xk

(i.e., computed from final encoder representations ek)
▶ Query comes from decoder

(from current representation of resp. output element)

• Again, very similar to decoder RNN of sl. 14, which
▶ Used RNN encoder states directly instead of computing keys/values
▶ Used RNN decoder state as query instead of element representation

• To obtain dt−1, need keys/values for inputs and prior outputs
▶ Can be recomputed every time, but that’s expensive
▶ As these keys/values don’t change, typically managed in a so-called

key-value cache (= the “dots” on next slide)
▶ When processing an element in the decoder, its keys/values are

added to the cache
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All together now (start of decoding)
2 decoder layers shown

MSA = masked self-attention block
xSA = cross attention block
MLP = MLP block

Each block is residual and
includes normalization
(both not shown)

Red arrow = query
Blue dot = k/v pair
Blue arrow = use of k/v pair

Each query is computed
using WQ of its
consuming layer

Each k/v pair is computed
using WK and W V

of its consuming layer
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All together now (generating y1)
2 decoder layers shown

MSA = masked self-attention block
xSA = cross attention block
MLP = MLP block

Each block is residual and
includes normalization
(both not shown)

Red arrow = query
Blue dot = k/v pair
Blue arrow = use of k/v pair

Each query is computed
using WQ of its
consuming layer

Each k/v pair is computed
using WK and W V

of its consuming layer
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All together now (generating y2)
2 decoder layers shown

MSA = masked self-attention block
xSA = cross attention block
MLP = MLP block

Each block is residual and
includes normalization
(both not shown)

Red arrow = query
Blue dot = k/v pair
Blue arrow = use of k/v pair

Each query is computed
using WQ of its
consuming layer

Each k/v pair is computed
using WK and W V

of its consuming layer
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All together now (generating y3)
2 decoder layers shown

MSA = masked self-attention block
xSA = cross attention block
MLP = MLP block

Each block is residual and
includes normalization
(both not shown)

Red arrow = query
Blue dot = k/v pair
Blue arrow = use of k/v pair

Each query is computed
using WQ of its
consuming layer

Each k/v pair is computed
using WK and W V

of its consuming layer
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Decoder-only Transfomers
• Decoder-only Transformers do not use an encoder, but solely

decoder-only blocks trained autoregressively (no cross attention)
▶ As before (cf. 07), can be causal (MSA only) or non-causal (full

self-attention for input parts, MSA for output parts)

• Example: GPT-1/2/3/4, ChatGPT (all causal)

• Used as a (conditional) deep generative model

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

3.3 Task-specific input transformations

For some tasks, like text classification, we can directly fine-tune our model as described above.
Certain other tasks, like question answering or textual entailment, have structured inputs such as
ordered sentence pairs, or triplets of document, question, and answers. Since our pre-trained model
was trained on contiguous sequences of text, we require some modifications to apply it to these tasks.
Previous work proposed learning task specific architectures on top of transferred representations [44].
Such an approach re-introduces a significant amount of task-specific customization and does not
use transfer learning for these additional architectural components. Instead, we use a traversal-style
approach [52], where we convert structured inputs into an ordered sequence that our pre-trained
model can process. These input transformations allow us to avoid making extensive changes to the
architecture across tasks. We provide a brief description of these input transformations below and
Figure 1 provides a visual illustration. All transformations include adding randomly initialized start
and end tokens (〈s〉, 〈e〉).

Textual entailment For entailment tasks, we concatenate the premise p and hypothesis h token
sequences, with a delimiter token ($) in between.

Similarity For similarity tasks, there is no inherent ordering of the two sentences being compared.
To reflect this, we modify the input sequence to contain both possible sentence orderings (with a
delimiter in between) and process each independently to produce two sequence representations hml
which are added element-wise before being fed into the linear output layer.

Question Answering and Commonsense Reasoning For these tasks, we are given a context
document z, a question q, and a set of possible answers {ak}. We concatenate the document context
and question with each possible answer, adding a delimiter token in between to get [z; q; $; ak]. Each
of these sequences are processed independently with our model and then normalized via a softmax
layer to produce an output distribution over possible answers.

4 Experiments

4.1 Setup

Unsupervised pre-training We use the BooksCorpus dataset [71] for training the language model.
It contains over 7,000 unique unpublished books from a variety of genres including Adventure,
Fantasy, and Romance. Crucially, it contains long stretches of contiguous text, which allows the
generative model to learn to condition on long-range information. An alternative dataset, the 1B
Word Benchmark, which is used by a similar approach, ELMo [44], is approximately the same size

4
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https://openai.com/blog/chatgpt/


Discussion
• Key ideas of Transformers are very general

▶ Self-attention over parts (e.g., a token, an image patch, a feature
vector, a graph vertex, . . .)

▶ Position information added to parts, instead of being “hard-coded”
(may use different encodings for sets, sequences, images, graphs)

▶ Many variants (some discussed later); see survey by Lin et al.
(2022)

• Implementation and pre-trained models readily available
▶ E.g., using the Transformers library

from transformers import pipeline
classifier = pipeline("sentiment-analysis")
classifier('The dog ate the cake.')
[{'label': 'NEGATIVE', 'score': 0.7528}]

• More on training and using powerful models such as Transformers
in lecture 10
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Graph learning
• Graphs everywhere, e.g.

▶ World Wide Web, social networks, citation graphs, protein-protein
interactions, purchasing networks, similarity graphs, road networks,
bitcoin transactions, knowledge graphs, ...

• Graph learning = machine learning with graphs
• Examples

▶ Vertex or edge classification (e.g., topic of website, friend or foe)
▶ Graph classification (e.g., properties of a molecule)
▶ Link prediction (e.g., facts in knowledge graph) or regression

(preference in recommender systems)
▶ Interesting vertices (e.g., influential bloggers, important web pages)
▶ Vertex clustering (e.g., similar products)
▶ Interesting subgraphs (e.g., communities, frequent subgraphs)
▶ Generating graphs (e.g., neural architecture search, scene graphs in

computer vision)
▶ Exploitation of background or domain knowledge represented as

(knowledge) graphs

Our focus: Spectral/neural methods for graphs.
2 / 10



Some challenges in graph learning
• Irregular structures

▶ We looked at sequences and grids so far
▶ Relationships between graph vertices much more irregular
▶ How to apply operations such as recurrence, convolutions,

self-attention or pooling on such data?

• Heterogeneity and diversity
▶ Within a graph: e.g., vertex degrees, types, features, modalities
▶ Across different graphs: e.g., weighted/unweighted,

directed/undirected, signed/unsigned, labeled/unlabeled, ...
▶ Widely varying tasks and domains

• No independent examples
▶ Each vertex (example) related to other vertices via links

• Scalability
▶ Graphs may be very large
▶ Learning methods may be complex/expensive

• Dynamic graphs
▶ Vertices, edges, features may change over time
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Deep learning for graphs

• Deep learning methods can be applied to graph learning
• Generally, use graph structure to facilitate reasoning

▶ Cf. CNNs, where we used a fixed grid structure
▶ Now: graph structure expresses relationships

• Part-based view also applicable: input represented in terms of
▶ Global features (if any)
▶ Parts (vertices) and relationship between parts (edges)

→ Relationship between parts now input-dependent
▶ Part features (= initial part embeddings): vertex and/or edge

features

4 / 10Wu et al., 2021

https://ieeexplore.ieee.org/abstract/document/9046288


Key operations
We generally use the same type of operations as before:
1. Contextualization: incorporate information from other parts

into each part embedding; e.g.,
▶ Spectral embeddings
▶ Graph convolutions
▶ Message passing and graph recurrences
▶ Graph transformers

→ Increase “receptive field” of each part’s representation
2. Local compute: update each part embedding individually

▶ As before; e.g., an MLP
3. Pooling: aggregate multiple (or all) part embeddings

▶ Readout as before (e.g., pool vertex embeddings)
▶ Pooling to change resolution (e.g., coarsen a graph) more involved

→ Increase “spatial invariance”
These operations are used to obtain higher-level representations
(embeddings) of each part and/or of the entire graph.
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Example: Graph classification (supervised)

• Many graphs, often smaller (e.g., molecules, ego-networks, ASTs)

• Given a set of labeled graphs, learn to classify new graphs
• Supervised learning

▶ Learn graph embeddings to use as input features for a (learned)
prediction head (e.g., softmax regression)

▶ Use input features and connectivity structure

6 / 10Wu et al., 2021

https://ieeexplore.ieee.org/abstract/document/9046288


Example: Vertex classification (transductive)

• Single graph, often large (e.g., networks, knowledge graphs)
• Some vertices labeled → Goal: label the unlabeled vertices
• Semi-supervised learning (transductive inference)

▶ Learn vertex embeddings to use as input features for a (learned)
prediction head (e.g., softmax regression)

▶ Use input features and connectivity structure
• For example, using holdout validation

▶ Train using training labels and full graph
▶ Validate using holdout labels and full graph
▶ Predict labels of unlabeled vertices of full graph 7 / 10Wu et al., 2021

https://ieeexplore.ieee.org/abstract/document/9046288


Outline (Graph Learning)

0. Overview
1. Spectral Embeddings
2. Deep Learning for Graphs
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Lessons learned
• Connectivity structure of graphs can be represented by matrices

(and vice versa)
▶ Adjacency matrix
▶ Degree matrix
▶ Graph Laplacian

• Spectral properties of graph Laplacian relates to structural
properties of the graph

• Deep learning for graphs
▶ Computation layers to obtain higher-level vertex representations

→ Based on recurrence, spectral/spatial convolution, transformers
▶ Pooling layers for coarsen the graph
▶ Readout operations to obtain graph representation

• Many variants and design choices
▶ Hyperparameter choice/optimization important
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• Ulrike von Luxburg
A Tutorial on Spectral Clustering
Statistics and Computing, 17(4), 2007

• Wu et al.
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This lecture

• Preliminaries for later lectures

• Introduction to graph signals & graph Laplacian
• Spectral embeddings

▶ Low-dimensional, continuous representation of each vertex in a
graph (i.e., a form of vertex embedding)

▶ Computed solely from and captures the graph structure
▶ Represents “position” of each vertex in the graph

• Useful to
▶ Perform spectral clustering (= clustering of the graph’s vertices)
▶ Obtain features for graph learning
▶ Perform graph convolutions
▶ Obtain position embeddings for graph transformers
▶ ...
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Outline

1. Background

2. Graph signals and graph Laplacian

3. Eigendecomposition of the graph Laplacian

4. Spectral embeddings
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Spectral clustering

• Consider the following graph

• Can we cluster the vertices into two clusters (or “communities”)
such that
1. Neighboring vertices tend to be in same cluster
2. Cluster sizes do not not vary “too much”

• Sure!

• Spectral clustering is one approach to do this
1. Compute spectral embeddings of each vertex in the graph
2. Cluster spectral embeddings (e.g., using k-Means)
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Graph-based semi-supervised learning (GSSL)

• Consider the following partially-labeled graph

• Can we label the remaining the vertices such that neighboring
vertices tend to have the same label?

• Sure!

• Graph-based semi-supervised learning is one approach to do this
▶ Learn a vertex classifier (e.g., based on vertex features)
▶ During learning, add a penalty term to the cost function that

penalizes assigning different labels to neighboring vertices
▶ One approach: penalize using graph Laplacian

5 / 36



Similarity graphs
• When we interpret each edge as expressing similarity, then

▶ Spectral clustering → cluster similar vertices
▶ GSSL → label similar vertices similarly (exploiting homophily)

• Given any dataset D = {x1, . . . ,xn } and a similarity function
s(x,x′) → R+ can construct a similarity graph
▶ Vertices correspond to data points
▶ Edges connect similar data points
▶ Optionally: edges weighted by similarity

• Many approaches to construct similarity graph; common:
▶ k-Nearest neighbor graph: connect each vertex to its k nearest

neighbors
▶ ϵ-neighborhood graph: connect vertices x and x′ when

s(x,x′) ≥ ϵ

• Why? Can then use graph-based learning on D via resulting
graph

6 / 36
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Example: Similarity graph for half-moon dataset
• 10NN similarity graph of 2D Euclidean data

• Gaussian kernel used as similarity function

• Note: similarity graphs model local similarities (but no
dissimilarities)
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Example: Spectral embeddings
The spectral embeddings for this graph are:
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• Shown here is the second component of the spectral embedding
(a single real value per vertex)

• Red: negative

• Blue: positive 8 / 36



Example: Spectral clustering
Spectral clustering of this graph into two clusters gives:
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• Observe: points that are far away may end up in same cluster
→ Clustering only considers local similarities

• Clustering methods such as k-Means used on original data are
global and give very different results
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Outline

1. Background

2. Graph signals and graph Laplacian

3. Eigendecomposition of the graph Laplacian

4. Spectral embeddings
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A graph is a matrix is a graph
• Let G = (V,E) be a (weighted) graph

• Vertices V = { v1, . . . , vn }
• Edge (i, j) ∈ E has positive weight aij (1 if unweighted)

• Convention: absent edges (i, j) /∈ E have weight aij = 0

• Adjacency matrix A is n× n matrix with entries aij

• Undirected graph =⇒ A symmetric (A = A⊤)

• (Out-)degree of vertex i given by di =
∑

j aij = a⊤
i 1

• Degree matrix D is n× n diagonal matrix with dii = di

v1

v2

v3

v4

v5


0 0 0 0 0
1 0 1 1 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0



0 0 0 0 0
0 3 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1


G A D
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Graph features
• Graph vertices and edges may be associated with features

▶ Vertex features: X ∈ Rn×D

▶ Edge features: Xe ∈ R|E|×C

▶ More generally, property graph model: arbitrary key-value pairs

12 / 36Rudolf et al., 2014

https://link.springer.com/chapter/10.1007/978-3-662-46839-5_11


Graph signals
• A graph signal is a function f : V → R

▶ Maps every vertex v to a real number fv
→ Can be represented as a vector f ∈ Rn

▶ Example: real-valued vertex features (x:f ) and (as we will see)
vertex embeddings or hidden vertex representations

1 0 1
f(v) =


1 v = v1

0 v = v2

1 v = v3

f =

1
0
1



• A key tool to graph signal processing is a matrix known as the
graph Laplacian
▶ More specifically, the eigendecomposition of the graph Laplacian
▶ Eigenvalues and eigenvectors expose structural graph properties

(e.g., connected components, spectral clustering)
▶ Eigenvalues and eigenvectors allow to define operations such as

filters and convolutions on graph signals

13 / 36
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Graph Laplacian

Definition
Let G be an undirected graph with positive edge weights. Denote
by A the (weighted) adjacency matrix of G, and by D the degree
matrix of G. Then

L = D −A

is called the (unnormalized) graph Laplacian of G.

Note that self edges (aii > 0) do not affect the graph Laplacian.

v1 v2 v3
1 1

1 0 0
0 2 0
0 0 1

 0 1 0
1 0 1
0 1 0

  1 −1 0
−1 2 −1
0 −1 1


G D A L
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Normalized graph Laplacians

Definition
There are two common normalizations of the graph Laplacian:

Lsym = D−1/2LD−1/2 = I −D−1/2AD−1/2

Lrw = D−1L = I −D−1A

• Normalization is performed w.r.t. degree

• Lsym is symmetric, Lrw is not

 1 −1 0
−1 2 −1
0 −1 1

  1 −1/
√
2 0

−1/
√
2 1 −1/

√
2

0 −1/
√
2 1

  1 −1 0
−0.5 1 −0.5
0 −1 1


L Lsym Lrw
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Properties of the graph Laplacian (1)

Theorem

For every graph signal f ∈ Rn, f⊤Lf =
1

2

n∑
i=1

n∑
j=1

aij(fi − fj)
2.

• f⊤Lf is a quadratic form and small when neighboring vertices
(connected with high-weight edges) take similar values according
to f → I.e., small when values change “slowly”

Proof.

f⊤Lf = f⊤Df − f⊤Af =

n∑
i=1

dif
2
i −

n∑
i=1

n∑
j=1

aijfifj

=
1

2

(
n∑

i=1

dif
2
i − 2

n∑
i=1

n∑
j=1

aijfifj +

n∑
j=1

djf
2
j

)

=
1

2

(
n∑

i=1

n∑
j=1

aij(f
2
i − 2fifj + f2

j )

)
=

1

2

n∑
i=1

n∑
j=1

aij(fi − fj)
2
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Properties of the graph Laplacian (2)

f⊤Lf =
1

2

∑
i,j

aij(fi − fj)
2

1 1 1
1 1

f⊤Lf = 0

-1 0 1
1 1

f⊤Lf = 2

1 -2 1
1 1

f⊤Lf = 18
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Properties of the graph Laplacian (3)

Theorem
L is symmetric and positive semi-definite.

• Recall: A matrix An×n is called positive semi-definite if
x⊤Ax ≥ 0 for any x ∈ Rn.

• Implies that x⊤Lx is a convex function (in x)

• Implies that L = PP⊤ for some P (oriented incidence matrix)

Proof. Since D and A are symmetric, so is L. Since x⊤Lx ≥ 0
(see slide 16) for all x ∈ Rn, L is positive semi-definite.
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Outline

1. Background

2. Graph signals and graph Laplacian

3. Eigendecomposition of the graph Laplacian

4. Spectral embeddings
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Background: Eigenvectors and eigenvalues
• A non-zero vector v ∈ Rn is an eigenvector of A ∈ Rn×n if

Av = λv

▶ If v in an eigenvector of A so is v′ = cv for 0 ̸= c ∈ R as
Av′ = cAv = cλv = λv′

• λ is the corresponding eigenvalue
• Collection of eigenvalues is called spectrum of A
• The eigenvalues are the roots of the characteristic polynomial

pA(λ) = det(A− λI)

• We can factor pA(λ) as

pA(λ) = (λ− λ1)
n1 · · · (λ− λN )nN ,

where 1 ≤ ni ∈ N and
∑

i ni = n
▶ ni is called the algebraic multiplicity of λi

▶ There are 1 ≤ mi ≤ ni linearly independent eigenvectors associated
with eigenvalue λi

▶ mi is called the geometric multiplicity of λi

▶ Note: Some eigenvectors can be complex 20 / 36



Background: Eigendecomposition

• The eigendecomposition of A ∈ Rn×n is given by

A = QΛQ−1,

where
▶ Q is square and has eigenvectors as its columns
▶ Λ is diagonal and has eigenvalues on its diagonal

• Does not always exist; if it does, A is called diagonalizable
• Some properties

1. When A is symmetric, Λ and Q are real-valued and Q can be
chosen to be orthogonal

For example, when L = PP⊤, consider SVD of P = UΣV ⊤

L = PP⊤ = (UΣV ⊤)(UΣV ⊤)⊤ = UΣ2U⊤ = QΛQ⊤

2. When A = QΛQ−1, then tr(A)
def
=
∑

i aii =
∑

i λi = tr(Λ)

• Note:
1. L (and Lsym) are symmetric
2. tr(L) = sum of degrees = 2× sum of edge weights
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Eigendecomposition of graph Laplacian
• Eigendecomposition L = QΛQ⊤ always exists, since L symmetric

▶ Q orthogonal
▶ Convention in this lecture: order eigenvalues in ascending order

• Example
v1 v2 v3

1 1

L =

 1 −1 0
−1 2 −1
0 −1 1



Q =

1/
√
3 −1/

√
2 1/

√
6

1/
√
3 0 −2/

√
6

1/
√
3 1/

√
2 1/

√
6

 Λ =

0
1

3


• q2 known as Fiedler vector (cf. slide 8)

▶ I.e., eigenvector corresponding to second-smallest eigenvalue
▶ Here q2 =

(
−1/

√
2 0 1/

√
2
)⊤
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Spectrum of the graph Laplacian

Theorem
All eigenvalues are non-negative and real-valued and the smallest
eigenvalue is λ1 = 0, i.e.,

0 = λ1 ≤ . . . ≤ λn−1 ≤ λn.

An eigenvector corresponding to λ1 = 0 is the all-ones vector 1.

• I.e., λ1 = 0, q1 = 1/
√
n

Proof. All eigenvalues of a symmetric matrix are real. To see that
they are also non-negative, recall from slide 16 that

v⊤Lv =
1

2

∑
ij

aij(vi − vj)
2 ≥ 0

since all aij ≥ 0. If Lv = λv, then 0 ≤ v⊤Lv = λ ∥v∥2 and thus
λ ≥ 0. Finally, 1 is an eigenvector with eigenvalue 0 as the row
sums of L are all 0 by construction; hence L1 = 0 = 01.
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Example: Eigenvalues/-vectors of graph Laplacian (1)

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

• We can view each eigenvector qi ∈ Rn of the graph Laplacian as
a graph signal (with f(v) = [qi]v)

• It holds: q⊤i Lqi = λi (as we chose Q orthogonal so that ∥qi∥ = 1)

• As eigenvalues are sorted in ascending order, the first eigenvectors
are more “consistent” with the graph (in that q⊤i Lqi smaller /
neighboring values more similar) than the later eigenvectors

24 / 36



Example: Eigenvalues/-vectors of graph Laplacian (2)
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λ1 = 0 λ2 = 0.04 (Fiedler vector)
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λ3 = 0.22 λ4 = 0.29
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Connected graphs

Theorem
If G is connected, then eigenvalue 0 has multiplicity 1, i.e., λ2 > 0.

1 1 1
1 1 1 0 -1

1 1

λ1 = 0 λ2 = 1 > 0

Proof. Recall that 1 is an eigenvector of L with eigenvalue 0.
Suppose that 0 ̸= v ̸= c1 is an eigenvector of L with eigenvalue λ.
Since G is connected, this implies that there are two neighboring
vertices i′ and j′ such that vi′ ̸= vj′ . Now

λ ∥v∥2 = v⊤Lv =
1

2

∑
i,j

aij(vi − vj)
2 ≥ ai′j′(vi′ − vj′)

2 > 0

so that λ > 0.
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Connected components

Theorem
The multiplicity k of eigenvalue 0 is equal to the number of
connected components G1, . . . , Gk of G. The corresponding
eigenspace is spanned by the indicator vectors 1Gi (value 1 for
vertices in Gi, value 0 otherwise).

Proof. Let L1, . . . ,Lk be the graph Laplacians of the connected
components. We have λ1(Li) = 0, λ2(Li) > 0, and v1(Li) = 1.
Order w.l.o.g. the vertices by their component so that

L =


L1

L2

. . .
Lk

 .

Since L is block-diagonal, the spectrum of L is given by the union
of the spectra of the Li. The corresponding eigenvectors are the
eigenvectors of Li, filled with 0 at positions of other blocks.
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Connected components (example)

L =



1 −1 0
−1 2 −1
0 −1 1

1 −1 0
−1 2 −1
0 −1 1


1 1 1 0 0 0

1 1 1 1

λ1 = 0

0 0 0 1 1 1
1 1 1 1

λ2 = 0

1 0 -1 0 0 0
1 1 1 1

λ3 = 1
28 / 36



Rayleigh-Ritz theorem (1)

• Recall that we can interpret f⊤Lf as a way to measure whether
f assigns similar values to neighboring vertices

• How can we pick f optimally?
• Trivial solution: constant values

▶ f(v) = 1 for all v ∈ V implies f⊤Lf = 0
▶ Not very helpful
▶ Note: f ∝ q1 and f⊤Lf = 0 = λ1

→ First eigenvector of L is trivial solution

• Non-trivial solution easy if G is not connected
▶ Let Gi be i-th connected component
▶ Keep signal constant within component (see previous slide)
▶ f(v) = I[v ∈ Gi] implies f⊤Lf = 0
▶ More helpful, exposes connected component
▶ Note: f ∝ qi and f⊤Lf = 0 = λi

→ i-th eigenvector (appropriately ordered) of L is solution

• What if G is not connected?
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Rayleigh-Ritz theorem (2)

Theorem
The solution to the optimization problem

minimize f⊤Lf
subject to f ⊥ 1

∥f∥ = 1

is given by q2, i.e., the Fiedler vector.

• This is a consequence of the Rayleigh-Ritz theorem
▶ States that when L is symmetric, eigenvalues/eigenvectors are the

critical points of the Rayleigh quotient f⊤Lf/f⊤f with f ̸= 0

• Consequence: q2 is best non-trivial solution
• Likewise: k-th best (i.e., orthogonal) solution given by qk

▶ I.e., orthogonal to “prior” solutions q1, . . . , qk−1
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Rayleigh-Ritz theorem (3)

• Problem: minf⊤Lf s.t. f ⊥ 1 and ∥f∥ = 1

• Can show: problem is relaxation of “minimum ratio cut” problem
▶ Roughly: partition a graph into two partitions such that partition

sizes are balanced and few connections between partitions
▶ Cost of minimum ratio cut ≥ λ2

• λ2 tells us how well we can partition a graph
▶ The smaller, the better

• Corresponding eigenvector q2 tells us how to partition
▶ Simple heuristic: use sign of q2’s entries
▶ Or run 2-means on entries of q2
▶ Insight used in spectral clustering graph partitioning method

31 / 36
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Outline

1. Background

2. Graph signals and graph Laplacian

3. Eigendecomposition of the graph Laplacian

4. Spectral embeddings
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Spectral embeddings
• We can associate a vertex embedding zv ∈ RD with each

vertex v ∈ V
▶ D is dimensionality of embedding
▶ zv is a low-dimensional representation of this vertex

• Vertices represented in D-dimensional coordinate system
▶ k’s entry of zv = value of k-th coordinate for vertex v

• Spectral embeddings
▶ Vertex embeddings obtained from eigenvectors Q of graph

Laplacian
▶ Let QD be n×D matrix of the first D columns of Q

(i.e., eigenvectors corresponding to D smallest eigenvalues)
▶ Spectral embedding of v = v’th row of QD

(i.e., corresponding values of v in the D eigenvectors)

• Spectral clustering into K partitions ≈ run K-means on QK

→ Spectral embeddings enhances clustering property of the data
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Example: Spectral embeddings
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λ2 = 0.04 (Fiedler vector) λ3 = 0.22
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λ4 = 0.29 λ5 = 0.83
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Example: Spectral clustering (1)
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Example: Spectral clustering (2)
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Recap: Deep learning for graphs

• Deep learning methods can be applied to graph learning
• Generally, use graph structure to facilitate reasoning

▶ Cf. CNNs, where we used a fixed grid structure
▶ Now: graph structure expresses relationships

• Part-based view also applicable: input represented in terms of
▶ Global features (if any)
▶ Parts (vertices) and relationship between parts (edges)
→ Relationship between parts now input-dependent

▶ Part features (= initial part embeddings): vertex and/or edge
features

2 / 43Wu et al., 2021
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Recap: Key operations
We generally use the same type of operations as before:
1. Contextualization: incorporate information from other parts

into each part embedding; e.g.,
▶ Spectral embeddings
▶ Graph convolutions
▶ Message passing and graph recurrences
▶ Graph transformers

→ Increase “receptive field” of each part’s representation
2. Local compute: update each part embedding individually

▶ As before; e.g., an MLP
3. Pooling: aggregate multiple (or all) part embeddings

▶ Readout as before (e.g., pool vertex embeddings)
▶ Pooling to change resoluti on (e.g., coarsen a graph) more involved

→ Increase “spatial invariance”
These operations are used to obtain higher-level representations
(embeddings) of each part and/or of the entire graph.
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Learned contextualization
• Last lecture: Spectral embeddings

▶ Obtained solely from graph structure
▶ Input: an undirected, unsigned graph
▶ Output: vertex embeddings that encode “position”
▶ Task-dependent information (such as labels) or additional infor-

mation (e.g., graph/vertex/edge features) not taken into account
▶ In this sense: Not learned

• This lecture: learned embeddings
▶ Learned for the task at hand
▶ Incorporate task-dependent and/or additional information
▶ Typically: more general types of graphs (e.g., directed graphs)

• Key questions
▶ How to perform contextualization and pooling for graph data?
▶ How to design DL architectures for graph data?
▶ How do different approaches compare to each other?
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General approach
• Main focus: undirected graph G = (V,E) with vertex features xv

for v ∈ V
▶ Edge directions, edge features, and graph-level features can be

handled by most of the approaches as well
▶ We’ll discuss this examplarily as we go

• Notation
▶ n = |V | for number of vertices
▶ Z for embeddings dimensionality
▶ Initial embeddings z

(0)
v ∈ RZ given by vertex features (e.g.,

z
(0)
v = xv) and/or learned (e.g., transductive settings)

▶ Operations compute higher-level features z
(l)
v ∈ RZ

▶ Represented as a matrix Z(l) ∈ Rn×Z

▶ Readout and prediction head applied to final features
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Outline
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*Background: Discrete Fourier transform and convolutions
• Discrete Fourier transform (DFT)

▶ Signal x ∈ Cn in time domain
▶ Transformed signal x̂ ∈ Cn in frequency domain
▶ Can be expressed via an n× n complex DFT matrix F ∈ Cn×n

such that x̂ = Fx (DFT) and x = F−1x̂ (inverse DFT)
▶ F /

√
n is unitary (complex analogue of orthogonal) → F−1 = 1

nF
∗

• Elements x̂k = f⊤
k x of x̂ called Fourier coefficients

• Original signal x = F−1x̂ = 1
n

∑
k x̂kf

∗
k

▶ Columns f∗
k of F ∗ are (scaled) samples from a complex sinusoid

with frequency (k − 1)/N (i.e., 0, 1
N , . . . , N−1

N )
→ Original signal = linear comb. of signals of multiple frequencies

▶ Elements of f∗
k are slowly changing over time for small k (low

frequency); in particular, f∗
1 ∝ 1

▶ And quickly changing for larger k (high frequency)
• x̂k encodes “strength” (amplitude |x̂k|) of frequency (k − 1)/N

• Property: (discrete circular) convolution in time domain
corresponds to element-wise multiplication in frequency domain

x̂⊛w = x̂⊙ ŵ
7 / 43
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Signal: x(t) = 3 sin(2πt) + sin(2π4t) + 0.5 sin(2π7t), 50 samples in [0, 1]
xt |x̂k|
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Graph Fourier transform
• Graph Fourier transform

▶ Graph signal x ∈ Rn in spatial (vertex) domain
▶ Transformed signal x̂ ∈ Rn in spectral domain
▶ Fourier matrix Q⊤ taken from eigendecomposition L = QΛQ⊤ of

graph Laplacian; we have x̂ = Q⊤x and x = Qx̂
▶ Q is orthogonal → Q = (Q⊤)−1

• Elements x̂k = q⊤k x are Fourier coefficients
• Original signal x = Qx̂ =

∑
k x̂kqk

▶ Columns qk of Q are eigenvectors and correspond to “frequency”
λk (recall 0 = λ1 ≤ · · · ≤ λN )
→ Original signal = linear comb. of signals of multiple frequencies

▶ Elements of qk are slowly changing over graph for small k (since
q⊤
k Lqk = λk); in particular, q1 ∝ 1

▶ And quickly changing for larger k (high frequency)
• x̂k encodes “strength” of frequency λk

• Define: graph convolution in spatial domain as element-wise
multiplication in frequency domain

x̂ ∗G w ≜ x̂⊙ ŵ
9 / 43



Eigenvectors/-values correspond to signals/frequencies
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Signal: x = 3q2 + q5 + 0.5q8 + 5q20, n = 100

x x̂
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Spectral convolution and learnable filters
• Define: x̂ ∗G w ≜ f̂ ⊙ ŵ

• Equivalently,
w ∗G x = Q

(
(Q⊤w)︸ ︷︷ ︸

ŵ

⊙ (Q⊤x)︸ ︷︷ ︸
f̂

)

• θ
def
= ŵ = Q⊤w is called a filter

• Spectral convolution with learnable filter

convG(x|θ) def
= Q(θ⊙(Q⊤x)) = QΘQ⊤x

where Θ = diag (θ)
▶ We learn filter θ directly
▶ More efficient than learning w and transforming it
▶ Easier to interpret: elements of θ refer to spectral domain

(frequencies), not graph domain (vertices)
▶ I.e., entry θk describes whether to reduce (< 1) / retain (= 1) /

boost (> 1) corresponding frequency of graph signal x
12 / 43



Spectral convolutional layers
• Spectral convolutional layers operate on multiple graph signals

(channels) simultaneously
▶ Z input channels, represented by an n× Z matrix Z(l−1)

▶ Z ′ output channels, represented by an n× Z ′ matrix Z(l)

• Output channels are computed as follows

z
(l)
j′ =

∑
j

convG(z
(l−1)
j |θ(j,j′))

▶ I.e., j′-th output channel is sum of filtered input channels
▶ One learnable filter for each input-output channel combination
→ Z · Z ′ filters in total

▶ Entire layer has Z · Z ′ · n parameters

• Typically followed by a non-linearity
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Example: vertex classification (transductive)

14 / 43Kipf and Welling, 2017

https://arxiv.org/pdf/1609.02907.pdf


Example: graph classification

15 / 43Casalegno, 2021

https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f/


Supported graphs
• Spectral convolution directly supports graphs that are undirected

and optionally weighted (with non-negative weights)
▶ Required for Laplacian / spectral analysis
▶ Example: similarity graphs (GSSL is a key application, cf. sl. 14)

• But: can be more generally applied
• Directed graphs supported by

1. Dropping edge directions (looses information)
2. Applying convolution for each direction separately

(and optionally pool)

• Multi-relational graphs (i.e., different edge categories) supported by
▶ Dropping edge categories (looses information)
▶ Applying convolution for each edge category separately

(and optionally pool)

• More general vertex features (e.g., categories or textual data)
supported by first embedding them into RD using a subnetwork

• Similar ideas also applicable to other types of graph neural
networks
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Discussion
• Plain spectral convolution layers often infeasible in practice

▶ Many variants exists to make them (more) feasible
• Large number of parameters; possible solutions:

1. Use only first eigenvectors
2. Interpolate θ using a cubic spline
3. Use a localized filter of form diag(θ) =

∑K
k=0 αkΛ

k with parameters αk

• Parameters cannot easily be shared across multiple graphs
▶ Depend on graph Laplacian and, in particular, its eigenbasis Q

• Not scalable to large graphs
▶ Filters not localized in spatial domain
→ Each node’s representation may be affected by all other nodes

▶ Expensive; at least O(n2) for forward and backward pass
• Scalabilty problem addressed by localized filters

▶ Localized filters are K-localized
→ Each node’s representation only affected by its K-hop neighborhood

▶ Can be computed in time complexity of only O(K|E|)
▶ Especially effective/efficient when stacking multiple K = 1 layers
▶ Reveals connection between spectral and spatial convolution (later)

17 / 43

https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1606.09375
https://arxiv.org/pdf/1609.02907.pdf


Outline

1. Graph Convolutions

2. Message Passing and Graph Recurrences

3. Readout and Pooling

4. Graph Transformers

18 / 43



Spatial convolutions and MPNNs

• Recall the convolution operations of CNNs: for each grid point,
1. Consider the corresponding local region
2. Compute a value for each grid point (using a filter)
3. Aggregate the so-obtained values (sum up)

• Can we apply this idea to graphs?
• Yes! For each vertex:

▶ Consider the 1-hop neighborhood of the vertex
▶ Compute a value for each vertex (and the corresponding edge) in

the 1-hop neighborhood
▶ Aggregate the so-obtained values (e.g., sum up)

• The resulting operation is called spatial convolution
▶ Graph neural networks (GNNs) using this operation are called

message-passing graph neural networks (MPNNs) 19 / 43



Vertex-centric programming
We can express message passing operations using a framework
known as vertex-centric programming.
1. Define four functions

▶ Init(v): initial vertex values
▶ Message(u, v): value passed along edge u→ v
▶ Aggregate(v,M): aggregate a set of messages
▶ Update(v, a): update vertex value given an aggregate

2. Assign an initial value z
(0)
v = Init(v) to each vertex v ∈ V

3. Perform message passing to compute Z(l) from Z(l−1)

1: for each v ∈ V
2: M

(l)
→v ← {m(l)

u→v
def
= Message(l)(u, v) : (u, v) ∈ E }

3: a
(l)
v ← Aggregate(l)(v,M

(l)
→v)

4: z
(l)
v ← Update(l)(v,a

(l)
v )

4. Optionally: repeat message passing multiple times (potentially
using different Message, Aggregate, Update functions)
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https://dl.acm.org/doi/10.1145/2818185


Message-passing neural networks (MPNNs)

• Many graph algorithms can be expressed using message passing;
e.g., shortest paths, number of connected components, PageRank
• An MPNN consists of multiple consecutive MPNN layers

▶ Input: vertex embeddings Z(l−1) ∈ Rn×Z

▶ Output: contextualized vertex embeddings Z(l) ∈ Rn×Z

▶ Common (and perhaps confusing): terms GNN and GCN also used
to refer to MPNNs in literature

• Each MPNN layer performs message passing using learned functions
▶ Typically: learned Message
▶ Sometimes: learned Init, Aggregate and/or Update
▶ Usually small subnetworks with a prefined architecture (e.g.,

GraphSAGE, MPNN, GAT, and GIN)
▶ Separate set of parameters for each layer

• Given an MPNN architecture, learning/prediction as discussed

21 / 43
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Example: GCN of Kipf and Welling (2017)
• Kipf and Welling (2017) motivated spatial convolution as a

first-order approximation to spectral convolution

• Their spatial GCN uses: Z(l) = ϕ(ÂZ(l−1)W (l))
▶ Z(l) ∈ Rn×Z are vertex representations at layer l
▶ W (l) ∈ RZ×Z represents a learnable linear transformation
▶ ϕ is a non-linearity (e.g., ReLU)
▶ Â is degree-normalized and symmetric adjacency matrix

Ã = A+ I is adjacency matrix with self-edges

Â = D̃
− 1

2 ÃD̃
− 1

2

• We obtain (exercise):

m(l)
u→v = m(l)

u
def
= (W (l))⊤z(l−1)

u (linear projection)

a(l)
v =

∑
m

(l)
u ∈M(l)

→v

1√
d̃u

1√
d̃v

m(l)
u (normalized sum)

z(l)
v = ϕ(a(l)

v ) (non-linearity)
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Example: Graph Attention Networks (GAT)

• GATs use attention to aggregate over neighbors
→ learned aggregation

• With single-head attention, the model is

m(l)
u→v = m(l)

u
def
= (W (l))⊤z(l−1)

u (linear projection)

a(l)
v =

∑
m

(l)
u ∈M(l)

→v

α(l)
u,vm

(l)
u (weighted average)

z(l)
v = ϕ(a(l)

v ) (non-linearity)

• α
(l)
u,v is attention weight for message m

(l)
u from u→ v

▶ Attention is performed over all messages in M
(l)
→v

▶ Key k(l)
u,v is given by m

(l)
u ∥m(l)

v , where ∥ denotes concatenation
▶ Query q(l) is learned
▶ Attention scores obtained via LeakyReLU((q(l))⊤k(l)

u,v)
▶ Attention weights via soft attention (softmax)
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Aggregation and expressive power
• Expressive power of MPNNs analyzed by Xu et al. (2019)

• Aggregation function plays crucial role

▶ Figure shows neighborhood aggregation with mean and max; colors
indicate messages (same color = same message sent)

▶ If v (left) and v′ (right) have same aggregate (av= av′), MPNN fails
to distinguish v from v′, even though their neighborhood differs

▶ Mean-aggregation ignores size of neighborhood
▶ Max-aggregation additionally ignores repeated messages
▶ Sum-aggregation works in all the above cases (multiset)
▶ Principled neighorhood aggregation (PRA): all of those and

more, empirically strong 24 / 43

https://arxiv.org/pdf/1810.00826.pdf
https://proceedings.neurips.cc/paper/2020/file/99cad265a1768cc2dd013f0e740300ae-Paper.pdf


Graph isomorphism networks (GIN)
• Xu et al. (2019) showed that GINs given by

m(l)
u→v = z(l−1)

u (pass lower-level representation)

a(l)
v = (1 + ϵ(l))z(l−1)

v +
∑

z
(l−1)
u ∈M(l)

→v

z(l−1)
u (weighted sum)

z(l)
v = f(a(l)

v |θ(l)) (local computation, parameterized)

are maximally powerful among all MPNNs
▶ Requires that f(·|θ(l)) and final readout are injective functions
▶ Roughly: GINs provably can produce different representations of

“many” non-isomorphic graphs
▶ “Many” means: non-isomorphism between each pair of graphs can

be determined by Weisfeiler-Lehman test of isomorphism (a
heuristic test)

▶ No MPNN can distinguish other non-isomorphic graphs
→ MPNNs obtain same graph embeddings → same predictions (!)

• Note: In practice, MPNNs can do more (e.g., distinguish two
isomorphic graphs if they differ in their input vertex features)
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Discussion
• Spatial convolution is common approach in practice

▶ Relatively simple
▶ Can be extended to support vertex/edge/graph attributes
▶ Can be extended to support different types of edges (e.g., R-GCN)
▶ Some libraries: DGL, Jraph, PyG

• Can be readily applied to many-graphs settings / new graphs
▶ Natural due to use of aggregation function (vs. graph Laplacian)
▶ Choice matters, esp. when graph properties differ significantly
▶ E.g., different aggregation functions for different degrees
▶ E.g., use first K neighbors based on suitable vertex ordering

• Efficiency can be a concern for large graphs
▶ For high-degree vertices, aggregation can be expensive
▶ “Neighborhood sampling” methods often used

26 / 43
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Example: Results of You et al. (2020) (1)

27 / 43

https://dl.acm.org/doi/10.5555/3495724.3497151


Example: Results of You et al. (2020) (2)
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Example: NBFNet for link prediction (1)
Neural Bellman Ford networks (NBFNet) are a method for link
prediction.
• In a single large graph with different edge types (such as

knowledge graphs or heterogeneous information networks)
• Use the labeling trick

▶ Label the “source vertex” for which to predict an outgoing edge
with a (learned) set of features, all other vertices with zero features

▶ Perform message passing with a GNN (accounting for edge types)
▶ Compute the dot product of the source vertex embedding to all

other vertex embeddings → the higher, the more likely a link

• Method trained to predict edges present in a given graph

• Resulting model applied to predict missing edges
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Example: NBFNet for link prediction (2)
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Excursion: GRNNs
• Receptive field of MPNN with K layers = K-hop

neighborhood
▶ May not be sufficent, esp. since K often small (say, 2–8)
▶ MPNNs cannot solve tasks such as shortest paths or determining

the number of connected components (exercise)

• Can be mitigated; e.g., by readout/pooling or by adding
transformer layers (both coming up)
• Alternative: graph recurrent neural networks

▶ Lift the notion of recurrence from RNNs to graphs
▶ Hidden state = vertex features
▶ Recurrence = an MPNN layer
▶ Approach: apply MPNN layer repeatedly until a fix point is reached

(nothing changes anymore)
▶ Number of layers (and hence receptive field) thus not hard-coded
→ Above problems can be solved (exercise)

▶ Used, for example, to model graph processes (fixed-structure
graphs, time-dependent features; e.g., weather station networks)
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Readout
• Recall: readout operation obtains a graph-level representation

▶ Generally want order invariance
▶ Means: vertex or edge order does not affect outcome
▶ Relationship to graph isomorphism problem implies that structurally

different graphs may end up with same representation

• Basic approaches
▶ Statistics such as element average/sum/maximum of vertex

embeddings
→ May not be representative to distinguish different graphs

▶ Fully connected layers
→ Order invariance not guaranteed, small graphs only

▶ Use a special “global” vertex that is connected to all vertices

• Effectiveness increased via pooling
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Pooling
• Cf. CNNs: gradually decrease resolution via pooling (or strided

convolutions), then fully connected layers
▶ How can we perform such pooling on a graph?

• General idea: use a (hierarchical) graph clustering algorithm
▶ Cluster the vertices (e.g., using spectral clustering)
▶ Pool the embeddings of vertices of each cluster

34 / 43Ying et al., 2018

https://arxiv.org/pdf/1806.08804.pdf
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Problems with message-passing GNNs
• Oversmoothing: (certain) deeper GNNs can perform worse than

shallower ones, since repeated neighborhood information can
“wash out” structure information (Xu et al., 2018)

• Oversquashing: as GNN depth increases, information from a
(potentially) exponential number of paths squashed into fixed-size
representations (Alon and Urav, 2021)

• Hard inductive bias: graph structure limits model’s
computation graph

• Limited expressive power (see slides 24 and 25) 36 / 43

https://arxiv.org/abs/1806.03536
https://arxiv.org/abs/2006.05205


Transformers to the rescue
• Idea: Add Transformer layers to compute graph

▶ Self-attention ≈ message passing between all nodes
▶ All vertex embeddings updated based on self-attention
▶ Every updated vertex embedding (in principle) depends on all of the

vertices (i.e., update is global)
▶ Avoids oversmoothing, since no (simple) neighborhood aggregation
▶ Mildens oversquashing, since information is “distributed” across all

vertices
▶ Avoids hard inductive bias, since computation graph not determined

by (but instead informed by) graph structure

• How to best use Transformers for graphs?
▶ A direct application (Z(l−1) in, Z(l) out) of a Transformer layer

ignores graph structure
▶ Key question: How to incorporate graph-structure information?
→ active research area

▶ Our focus: overview of general approaches
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Approach 1: Mix-in GNN layers
• Combine Transformer layers with GNNs

▶ GNNs: local, structure-aware
▶ Transformers: global, not structure-aware when applied directly

38 / 43Min et al., 2022

https://arxiv.org/pdf/2202.08455.pdf


Approach 2: Structure-aware positional embeddings
• Recall that Transformers for NLP use positional embeddings (PE)

to encode ordering
▶ E.g., sine functions of varying frequency; Vaswani (2017) used

PE(pos)2i = sin(pos/100002i/dmodel)

PE(pos)2i+1 = cos(pos/100002i/dmodel)

▶ Low frequency (i large): change slowly in neighborhood
▶ High frequency (i small): change quickly in neighborhood

• Natural analogue for graphs are spectral embeddings (cf. 09-1
and sl. 9ff)
▶ Each eigenvector corresponds to a “frequency”
▶ Again, we use the eigenvectors associated with the smallest

eigenvalues (lower frequencies)
▶ E.g., directly used by Dwivedi and Bresson (2020)
▶ E.g., spectral attention networks by Beaini et al. (2021) (next

slide)
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Example: Spectral Attention Networks (SAN, 2021)

40 / 43Beaini et al. (2021)

https://arxiv.org/abs/2106.03893


Example: SAN’s experimental results

Note: Not SOTA anymore.

41 / 43Beaini et al. (2021)

https://arxiv.org/abs/2106.03893


Approach 3: Modify attention mechanism
• Another approach is to restrict/modify to which other nodes each

node can attend to
▶ E.g., only direct neighbors (Dwivedi and Bresson, 2020)
▶ E.g., Graphormer uses shortest-path distances (among others) to

modify attention weights (Ying et al., 2021)
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Discussion
• Difficult to choose suitable approach

▶ E.g., some evidence for each approach in study of Min et al., 2022
▶ E.g., some evidence for approach 2 in study of Beaini et al. (2021)

• Scalability often a problem
▶ Generally ok for many small graph scenarios
▶ Very problematic for large graphs

• Many (!) graph learning methods have been and are still being
proposed; e.g., survey of Ju et al. (2024)
▶ Transformer-based, GNN-based, . . .
▶ No golden bullet
▶ Extensive experimentation often required
▶ More comparative studies / benchmarks needed

• Stay tuned!
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From the tools and the models. . .

• The tools: backpropagation, optimizers, hyperparameter tuning
• The models: large, complex neural networks

▶ Fully-connected layer with n inputs and m units: O(nm) parameters
10 dense layers, each 200 inputs/units → 400k parameters
1 dense layer, 1M inputs, 200 units → 200M parameters

▶ E.g., T5 text-to-text transformer
(small: 60M, base: 220M, large: 770M, 3B, 11B)

▶ E.g., ConvNext for CV
(T: 60M, S: 82M, B: 121, L: 235M, XL: 391M)

▶ E.g., DimeNet++-XL, a GNN for modelling atomic systems
(Base: 1.8M, Large: 10.8M, XL: 240M)

• And now?
▶ Which training data, which training objectives, which model?

→ this and, more comprehensively, related lectures (cf. slide 01/19)
▶ How to train at scale?

→ not in this course
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. . . to the art
The art: Which training data, which training objectives, which model?
• Sufficiently expressive (i.e., large) models needed for complex

tasks
• Overfitting is a severe concern

▶ Universal approximation theorem: with sufficiently many hidden
neurons, FNN can perform arbitrarily well on the training set

• Limited labeled training data
▶ Large labeled datasets for the task at hand generally not available
▶ Supervision signal alone may be insufficient to achieve reasonable

performance

• Design space is large
▶ Experimentation is costly
▶ Experience and domain knowledge is key

• Generally, goals include
▶ Reduce overfitting, improve generalizability, reduce biases
▶ Leverage additional data
▶ Reduce (task-specific) costs such as model size, computational

costs, amount of required supervision, . . . 3 / 44



4 / 44Srivastava et al., 2023

https://arxiv.org/abs/2206.04615


Larger models may exhibit more bias

5 / 44Srivastava et al., 2023

https://arxiv.org/abs/2206.04615


Larger models require more data

6 / 44Srivastava et al., 2023

https://arxiv.org/abs/2206.04615


Overview
Many strategies to avoid overfitting and/or improve the training
process (for a particular task) exist.

• Standard strategies, e.g.,
▶ Use parameter norm penalties or max-norm constraints
▶ Use early stopping during training (i.e., don’t train until convergence)
▶ To some extent: use simpler models
▶ Not discussed here (see ML course)

• Deep learning-specific strategies; e.g.,
▶ Careful architecture engineering (as discussed)

(e.g., sparse connections, residual connections, parameter tying,
deep over wide, normalization, . . . )

▶ Data augmentation: create additional training data
▶ Pretraining and fine-tuning: start from “suitable” model & adapt

it for task at hand
▶ Prompting: use one model for many tasks
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Outline

1. Data Augmentation

2. Pretraining and Fine-Tuning

3. Prompting
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Class-preserving transformations
• Data augmentation: add generated data to training data

▶ Aims to combat data scarcity
▶ Often based on available training data
▶ Fully automatic
▶ When done well, can dramatically reduce the generalization error

• Example: Class-preserving transformations
▶ Given labeled example (x, y), create augmented example (x̃, y)

such that x̃ and x (likely) belong to the same class
▶ Increases invariance of model to such transformations
▶ E.g., in CV: crop/rotate/shift/scale, color space, filters, synthesis,

. . .
▶ E.g., in NLP: insertion/deletion/swaps, synonyms/paraphrasing,

back translation, . . .
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https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0
https://arxiv.org/abs/2105.03075


Mixup augmentation
• Given two labeled examples (x1, y1) and (x2, y2), create mixup

example (x̃, ỹ) such that
▶ x̃ “lies between” x1 and x2

▶ ỹ “lies between” y1 and y2
• Helps to “smoothen” decision boundaries
• Example: linear mixup

▶ Inputs (e.g., grid data) and labels (e.g., one-hot encoded class) are
real-valued vectors

▶ Given mixup ratio λ ∈ [0, 1], interpolate linearly:

x̃ = λx1 + (1− λ)x2

ỹ = λy1 + (1− λ)y2

10 / 44Cheng, 2021

https://arxiv.org/abs/1710.09412
https://medium.com/data-science/enhancing-neural-networks-with-mixup-in-pytorch-5129d261bc4a


Masking
• Masking means to “hide” information during training

1. E.g., parts of input data
2. E.g., some (parts of) higher-level part representations
3. E.g., some (parts of) model weights

• Model then less reliant on specific information; e.g.,
1. Encourages model to not focus on a small part of the input &

model learns to handle missing data &
impact of spurious correlations may be reduced

2. Encourages model to not rely on a small subset of features
3. Encourages model to not rely on a small set of weights

• Often performed stochastically
• How to hide a part? E.g.,

▶ Zero out part
▶ Replace part by its mean
▶ When part is categorical (e.g., a token in LLMs), set it to a special

MASK category (e.g., a MASK token)

• When done well, can provably and empirically reduce
generalization error 11 / 44

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00335/96483/An-Empirical-Study-on-Robustness-to-Spurious
https://openreview.net/forum?id=25kAzqzTrz


Spurious correlations
Spurious correlations means that model exploits features
associated with but not causally related to output.

12 / 44Lapuschkin, 2019

https://www.nature.com/articles/s41467-019-08987-4


Dropout

• Dropout randomly zeros-out
activations of inputs/hidden
layers during training (e.g., 80%
of input, 20% of hidden layer)

• Forces network to be accurate
even in absence of some
information

• Do the same during inference
(multiple times) or use weight
scaling heuristic (by inverse
dropout probability)

• Can be seen as approximation
of bagging (with parameter
sharing)

13 / 44

http://jmlr.org/papers/v15/srivastava14a.html


Noise injection
• Noise injection perturbs inputs/activations/weights/targets

▶ To make network more robust to noise
▶ To alleviate overfitting to noise in training data

• Example: dropout (as discussed)
• Example: label smoothing

▶ Replace classification targets (e.g., { 0, 1 }) by smoothed versions
(e.g., { ϵ, 1− ϵ })

▶ Prevents extreme predictions
▶ Alleviates impact of incorrect labels (label noise)

14 / 44
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Adversarial training
• Adversarial example

CHAPTER 7. REGULARIZATION FOR DEEP LEARNING

+ .007 × =

x sign(∇xJ (θ x, , y))
x +

 sign(∇xJ(θ x, , y))
y =“panda” “nematode” “gibbon”
w/ 57.7%
confidence

w/ 8.2%
confidence

w/ 99.3 %
confidence

Figure 7.8: A demonstration of adversarial example generation applied to GoogLeNet
( , ) on ImageNet. By adding an imperceptibly small vector whoseSzegedy et al. 2014a
elements are equal to the sign of the elements of the gradient of the cost function with
respect to the input, we can change GoogLeNet’s classification of the image. Reproduced
with permission from ( ).Goodfellow et al. 2014b

to optimize. Unfortunately, the value of a linear function can change very rapidly
if it has numerous inputs. If we change each input by , then a linear function
with weights w can change by as much as || ||w 1, which can be a very large
amount if w is high-dimensional. Adversarial training discourages this highly
sensitive locally linear behavior by encouraging the network to be locally constant
in the neighborhood of the training data. This can be seen as a way of explicitly
introducing a local constancy prior into supervised neural nets.

Adversarial training helps to illustrate the power of using a large function
family in combination with aggressive regularization. Purely linear models, like
logistic regression, are not able to resist adversarial examples because they are
forced to be linear. Neural networks are able to represent functions that can range
from nearly linear to nearly locally constant and thus have the flexibility to capture
linear trends in the training data while still learning to resist local perturbation.

Adversarial examples also provide a means of accomplishing semi-supervised
learning. At a point x that is not associated with a label in the dataset, the
model itself assigns some label ŷ . The model’s label ŷ may not be the true label,
but if the model is high quality, then ŷ has a high probability of providing the
true label. We can seek an adversarial example x that causes the classifier to
output a label y with y = ŷ. Adversarial examples generated using not the true
label but a label provided by a trained model are called virtual adversarial
examples (Miyato 2015et al., ). The classifier may then be trained to assign the
same label to x and x. This encourages the classifier to learn a function that is

269

• Adversarial training: augment training data with adversarial
examples
▶ Increase model robustness
▶ Defend against adversarial attacks
▶ May be expensive
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https://arxiv.org/pdf/1904.12843.pdf


Outline

1. Data Augmentation

2. Pretraining and Fine-Tuning

3. Prompting
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Pretrained models
Success of deep learning to a large extent based on collecting and
leveraging large amounts of data (and compute) to obtain
pretrained models.

• General approach
▶ Train powerful model on “available” data and carefully-chosen tasks

instead of actual the target task
▶ Customize model for task at hand (e.g., fine-tuning, prompting)
▶ Often reduces task-specific cost and improves model

performance

• Many pretrained models available; e.g., for language (T5,
RoBERTa, Mistral 7B) or vision (EfficientNet, Stable Diffusion)
or tabular data (TabPFN) or time series (Chronos)

• Many private; trained models are a business asset
▶ Provide API services + usage-based pricing model
▶ GPT-4, Gemini, DALL·E 3, . . .

17 / 44

https://huggingface.co/docs/transformers/en/model_doc/t5
https://huggingface.co/FacebookAI/roberta-base
https://mistral.ai/news/announcing-mistral-7b/
https://pytorch.org/hub/nvidia_deeplearningexamples_efficientnet/
https://stablediffusionweb.com/
https://github.com/PriorLabs/TabPFN
https://www.amazon.science/code-and-datasets/chronos-learning-the-language-of-time-series
https://openai.com/index/gpt-4-research/
https://gemini.google.com/
https://openai.com/index/dall-e-3/


Feature detectors and prediction heads
• Consider a supervised learning task

▶ Inputs X , outputs Y
▶ “Small” training set D ⊆ X × Y

• Given a model architecture, let’s divide it into a part that
extracts features and part that predicts based on these features

x ∈ X Feature
detector

Prediction
head

y ∈ Yz

• Division such that
1. Feature detector (backbone, base model) performs most of the

“heavy lifting” and provides suitable features for prediction
2. Prediction head is simple (e.g., softmax layer or a small MLP)

• Cf. lecture 02-1 on embeddings
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Key idea of pretraining

x ∈ X Feature
detector

Prediction
head

y ∈ Yz

• Key idea of pretraining
1. Learn feature detector using auxiliary data and/or tasks

→ Pretrained model
2. Learn prediction head using task-specific data D

→ Model for downstream task
• Why pretrain?

1. Make use of auxiliary data
2. Less labeled data and computational cost to train prediction head
3. Can train different prediction heads for different (but related) tasks
4. Powerful base models available for certain tasks; e.g.,

https://paperswithcode.com/
https://modelzoo.co/
https://www.tensorflow.org/hub
https://pytorch.org/hub/
https://huggingface.co/models
. . .
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https://paperswithcode.com/
https://modelzoo.co/
https://www.tensorflow.org/hub
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Fine-tuning
• Without fine-tuning: train only head in supervised fashion

x Feature
detector

Directly use
pretrained model

Prediction
head

Learn from
scratch

yz

▶ Need labeled data
▶ But less challenging when feature detector suitable: can get away

with relatively simple predictor and less training data

• With fine-tuning: also retrain (parts of) feature detector

x Feature
detector

Initialize with
pretrained model

Prediction
head

Learn from
scratch

yz

▶ More expensive, but can improve feature detection for actual task
▶ Higher risk of overfitting
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Pretraining data
• Labeled data; e.g.,

▶ Labeled images (ImageNet, COCO, Visual Genome)
▶ Task collections (BIG-bench)

• Paired data
▶ Images and text (PMD, LAION-5B)
▶ Parallel multilingual text corpora (OPUS)

• Unlabeled data
▶ Textual data such as web data (CommonCrawl, WebText) or books

(BookCorpus, Wikipedia)
▶ Social media data (Twitter, Reddit, Stack Overflow)
▶ Source code (GitHub)
▶ Multimodal data such as text interleaved with images
▶ Knowledge graphs (Wikidata, DBpedia)

• Synthetic data
▶ Generated to model reasonable data distributions (e.g., TabPFN,

Rendered.ai, self play, digital twins)

• . . .
21 / 44

https://opus.nlpl.eu/
https://github.com/PriorLabs/TabPFN
https://rendered.ai/
https://en.wikipedia.org/wiki/Self-play
https://en.wikipedia.org/wiki/Digital_twin


Unsupervised pretraining
• Unsupervised pretraining

▶ Based on (additional) unlabeled data Dunlabeled ⊆ X
▶ Suitable when (useful) unlabeled data are readily available

• Example: unsupervised pretraining using an autoencoder
▶ Encoder serves as pretrained feature detector
▶ Decoder thrown away afterwards

Pretraining (on Dunlabeled)

x ∈ X Encoder Decoder x̂ ∈ Xz

x ∈ X Feature
detector

Prediction
head

y ∈ Yz

use as

Training (on D)

• Hope that features are more useful for downstream tasks (e.g,
feature detector may perform dimensionality reduction)

22 / 44



Supervised pretraining
• Supervised pretraining

▶ Based on additional labeled data Dpre ⊆ X × Ypre

▶ Suitable when (useful) data for a different but related task is
available

Pretraining (using Dpre)

x ∈ X Feature
detector

Prediction
head

y ∈ Ypre
z

x ∈ X Feature
detector

Prediction
head

y ∈ Yz

use as optionally:
initialize with

Training (using D)
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Example: CV models pretrained on ImageNet data

https://www.image-net.org/

• 10,000,000 labeled images depicting 10,000+ object categories

• Pretrain using popular ILSVRC 2012-2017 image classification
and localization task

24 / 44

https://www.image-net.org/
https://www.kaggle.com/c/imagenet-object-localization-challenge/overview/description


Self-supervised pretraining
• Self-supervised methods use unlabeled data Dunlabeled to

automatically build supervised prediction tasks
▶ Cf. autoencoder
▶ But: well-designed, domain-specific self-supervised tasks often more

powerful → key ingredient of state-of-the-art models
• Generally, mask-and-reconstruct tasks very powerful

▶ Mask: as discussed, hide part of the input (tokens in text, parts of
images, cells in tables, vertices/edges in graphs)

▶ Reconstruct: train model to model predict the masked part

• E.g., for NLP: mask-and-reconstruct tokens in input text
▶ Language model (LM): provide prefix, predict next token(s)
▶ Masked language model (MLM): provide input with some

intermediate tokens masked out, predict the masked tokens
▶ Models that perform well on these tasks are very powerful

Albert Einstein was born in ? (factual knowledge)
I like to eat ? (common sense knowledge)
All humans are mortal. Socrates is human.
Therefore Socrates is ? (reasoning)

25 / 44



Example: BERT (pretraining)

(NSP = Next Sentence Prediction, another self-supervised task)

26 / 44Devlin et al., 2018

https://arxiv.org/pdf/1810.04805v2.pdf


Example: BERT (fine-tuning)

(SQuAD is reading comprehension benchmark)

27 / 44Devlin et al., 2018

https://rajpurkar.github.io/SQuAD-explorer/
https://arxiv.org/pdf/1810.04805v2.pdf


Example: GPT

• GPT models are pretrained using language modelling (left)

• Observe: downstream tasks expressed in “textual” form as well
(right, cf. slide 38)

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

3.3 Task-specific input transformations

For some tasks, like text classification, we can directly fine-tune our model as described above.
Certain other tasks, like question answering or textual entailment, have structured inputs such as
ordered sentence pairs, or triplets of document, question, and answers. Since our pre-trained model
was trained on contiguous sequences of text, we require some modifications to apply it to these tasks.
Previous work proposed learning task specific architectures on top of transferred representations [44].
Such an approach re-introduces a significant amount of task-specific customization and does not
use transfer learning for these additional architectural components. Instead, we use a traversal-style
approach [52], where we convert structured inputs into an ordered sequence that our pre-trained
model can process. These input transformations allow us to avoid making extensive changes to the
architecture across tasks. We provide a brief description of these input transformations below and
Figure 1 provides a visual illustration. All transformations include adding randomly initialized start
and end tokens (〈s〉, 〈e〉).

Textual entailment For entailment tasks, we concatenate the premise p and hypothesis h token
sequences, with a delimiter token ($) in between.

Similarity For similarity tasks, there is no inherent ordering of the two sentences being compared.
To reflect this, we modify the input sequence to contain both possible sentence orderings (with a
delimiter in between) and process each independently to produce two sequence representations hml
which are added element-wise before being fed into the linear output layer.

Question Answering and Commonsense Reasoning For these tasks, we are given a context
document z, a question q, and a set of possible answers {ak}. We concatenate the document context
and question with each possible answer, adding a delimiter token in between to get [z; q; $; ak]. Each
of these sequences are processed independently with our model and then normalized via a softmax
layer to produce an output distribution over possible answers.

4 Experiments

4.1 Setup

Unsupervised pre-training We use the BooksCorpus dataset [71] for training the language model.
It contains over 7,000 unique unpublished books from a variety of genres including Adventure,
Fantasy, and Romance. Crucially, it contains long stretches of contiguous text, which allows the
generative model to learn to condition on long-range information. An alternative dataset, the 1B
Word Benchmark, which is used by a similar approach, ELMo [44], is approximately the same size

4
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Example: TURL, Grover

TURL for tabular data

GROVER for molecular graphs

29 / 44Deng et al., 2020; Rong et al., 2020

http://www.vldb.org/pvldb/vol14/p307-deng.pdf
https://arxiv.org/abs/2007.02835
http://www.vldb.org/pvldb/vol14/p307-deng.pdf
https://arxiv.org/abs/2007.02835


Contrastive Learning
• Contrastive learning is a form of self-supervised learning

▶ Roughly: learn to compare two inputs
▶ Trained to discriminate similar inputs (positives) and dissimilar

inputs (negatives)
▶ Choice of training examples very important

• Example: Siamese neural networks (also called: bi-encoder)
▶ Use the same neural network on each input to obtain features
▶ Followed by a simple comparison (e.g., cosine similarity)

→ Good models assign similar features to similar inputs

• Use contrastive model as feature detector (as before)
▶ Drop the “comparison” part, keep the rest
▶ Fine-tune afterwards

• Also: use directly (metric learning)
▶ E.g., use for classification (as in a nearest-neighbor classifier)
▶ E.g., use for information retrieval (as in nearest neighbor search)
▶ E.g., use for one-shot learning (only one example for class) or

few-shot learning
30 / 44

https://arxiv.org/abs/2010.05113
https://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network.pdf


Example: One-shot learning with Siamese networks

31 / 44Koch et al., 2015

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf


Example: SimCLR
• Train without labels: each batch consists of two augmentations

of each of N images

• Model trained to determine corresponding augmentations

32 / 44Le-Khac et al., 2020

https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2010.05113


Fine-tuning and overparameterization
• Fine-tuning large models is costly

▶ A separate model (updated base model + prediction head) is
obtained for each task

▶ Base models are large

• Can we reduce this cost? Goals:
▶ Retain good performance (quality, fine-tuning/inference cost)
▶ Allow task-specific fine-tuning (i.e., individually, not multi-task)
▶ Small number of parameters per task

• Key insight: base models are often overparametrized
▶ Lottery ticket hypothesis: “dense, randomly-initialized, feed-forward

networks contain [small] subnetworks (winning tickets) that—when
trained in isolation—reach test accuracy comparable to the original
network in a similar number of iterations”

▶ Consequently, fine-tuned models are also overparametrized
▶ Can be exploited indirectly to prune trained networks
▶ Can be exploited directly to reduce cost of fine-tuning
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https://arxiv.org/abs/1803.03635
https://jmlr.org/papers/volume22/21-0366/21-0366.pdf


Low-cost fine-tuning
• Adapter layers

▶ Before fine-tuning, inject (residual) adapter layers at certain places
▶ Typically a bottleneck → few parameters
▶ Initialized randomly, then fine-tuned (original weights remain frozen)

• Low-rank adaptation (LoRA)
▶ Only learn updates to the model weights (plus all biases)
▶ Update is low-rank matrix = down-, then up-project → bottleneck
▶ Similar to adapters, but linear and at different location (e.g., on

weights in multi-head attention layer)
▶ Leads to a residual update of outputs for linear layers → can be

computed in parallel (i.e., compute update of output while
computing the base models’ output)

• Simple baseline: BitFit
▶ Only retrain bias weights
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https://arxiv.org/pdf/1902.00751
https://arxiv.org/pdf/2106.09685
https://arxiv.org/abs/2106.10199


Adapter layers
Injected adapter layers Adapter layer
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LoRA

A and B are learned during fine-tuning
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Outline
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2. Pretraining and Fine-Tuning

3. Prompting

37 / 44



Prompting
• Alternative approach: prompting

▶ Use a generative foundation model = a powerful general-purpose
model trained on large amounts of data and suitable for a wide
variety of tasks

▶ No fine-tuning

• Example: GPT-3 and successors
▶ Model input: description of data/task in textual form (prompt)
▶ Model output: answer in textual form

38 / 44OpenAI examples

https://arxiv.org/pdf/2005.14165.pdf
https://platform.openai.com/examples


Prompting (multi-modal)
Example: Kosmos-1 multimodal large language model

39 / 44Huang et al. (2023)

https://arxiv.org/abs/2302.14045


Prompt/answer engineering
• Performance can heavily depend on how prompts and answers are

written → prompt/answer engineering
• General approach:

• More in survey of Lie et al. (2021)
40 / 44Lie et al. (2021)

https://arxiv.org/pdf/2107.13586
https://arxiv.org/pdf/2107.13586


Examples of prompt engineering
• In-context learning (see next slide)

▶ Provide examples and/or background information for task with
prompt

▶ Typically just a few examples → a form of few-shot learning
▶ Choice of examples matter → selection can be key
▶ More in survey of Dong et al. (2023)

• Chain-of-thought prompting
▶ Decompose multi-step problems into individual steps
▶ Provide individual steps with demonstrations
▶ Generate steps along with actual answer for new inputs
▶ More in survey of Chu et al. (2023)
▶ Modern “reasoning models” do this directly (via a scratchpad)

• Much more in: IE 868 Large Language Models and Agents
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https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2309.15402


42 / 44Brown et al. (2020)

https://arxiv.org/pdf/2005.14165.pdf


Example: chain-of-thought prompting
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Discussion
• Pretraining is often instrumental to good performance

▶ Esp. in NLP (exploit large textual corpora) and CV (exploit
resources such as ImageNet) or both

▶ Generally, hope that pretrained model useful for actual task
▶ Strong empirical evidence
▶ Pretraining task/data very important (e.g., avoid spurious correlations)
▶ Used via fine-tuning for task or prompting

• Related: transfer learning
▶ Transfer learning: exploit model trained on different (but related)

domain or task for actual task
▶ E.g., pretrain model on related domain, then fine-tune on actual

domain

• Related: multi-task learning
▶ Simultaneously train for multiple tasks using a shared model
▶ E.g., shared feature detector, task-specific prediction heads
▶ Can improve data efficiency, reduce overfitting, and speed up

learning
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